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LA VOÛTE DE MAÇONNERIE 
 
JACQUES HEYMAN, Professeur d’ingénierie, Université de Cambridge 
 
Ce livre rassemble les vastes connaissances de l’auteur et son expérience des constructions en 
maçonnerie, accumulées et consolidées au fil des années, et offre une contribution utile à la 
construction civile. Il développe de nouvelles méthodes d’analyse et de dessin des voûtes maçonnées 
en présentant l’approche complètement nouvelle d’un ingénieur largement reconnu faisant autorité. 
 
Le texte est rédigé dans un style élégant et fluide avec une lucidité qui s’adresse tout autant aux 
ingénieurs académiques qu’aux ingénieurs en exercice. Les technologies éprouvées d’analyse des 
voûtes de maçonnerie sont passées en revue vis à vis des données théoriques issus des puissants 
théorèmes de la plasticité ; l’étude qui en résulte va placer un nouvel outil dans les mains des 
designers et pourrait entraîner une augmentation accentuée des débats concernant des voûtes de 
maçonnerie dans les programmes de construction contemporains. 
 
L’auteur propose ici une étude particulièrement intéressante du développement historique du sujet ; 
l’accent est mis sur des considérations statiques et cinématiques qui sont indépendantes de la 
constitution précise du matériau constituant la voûte. C’est une approche plus large des théorèmes 
limites jusqu’à présent presque exclusivement associés aux matériaux plastiques. Parmi les questions 
posées par le Professeur Heyman : quelle est la meilleure forme pour une voûte devant supporter des 
charges données ? de quelle épaisseur devrait être l'arch ring ? quelle charge peut supporter un pont 
médiéval donné ? L’auteur répond à ces questions et insiste tout au long sur le concept utile du 
facteur géométrique du sûreté. Des planches techniques illustrent le texte ainsi que de nombreuses 
illustrations. 
 
Lectorat : ce livre s’adresse aux dessinateurs et ingénieurs civil et mécanique en exercice, de même qu’aux 
autorités locales ; avec une attention particulière aux professeurs et étudiants en troisième cycle d’études. 
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Préface 
 
 
 
La partie la plus inattendue de ce livre est probablement son dernier chapitre qui tente d’utiliser la 
théorie des voûtes de maçonnerie pour comprendre les arcs de fonte ou de fer forgé (made of cast or 
wrought iron). Comment appliquer des techniques destinées aux constructions en pierre à celles faites 
de fer ? Cela, je l’espère, deviendra clair au fur et à mesure du développement de la théorie. 

Cette théorie est introduite dans le premier chapitre qui rappelle des idées bien connues à 
propos de la ligne de poussée (axiale) line of thrust ; l’équilibre est traité de façon conventionnelle en 
se référant à la règle du tiers médian. Dans le second chapitre, la théorie est examinée par rapport à 
un arrière-plan d’idées issues des théorèmes de la plasticité, et un certaine quantité de rigueur 
académique est apportée au travail. Cette étude, même superficielle,  de l’histoire de l’analyse 
technique des ponts apporte une compréhension plus profonde du comportement des voûtes ; en tout 
cas, le troisième chapitre en donne un court résumé. Les histoires de Fuller peuvent être trouvées par 
ailleurs, et ma discussion des Mémoires sur la statique de Coulomb fournit de plus amples 
informations. 

Cette façon de présenter le matériau pourrait être celle d’un historien whig. La vision pour 
ainsi dire ‘correcte’ est exposée en premier et le témoignage historique est ensuite interprété à la 
lumière de cette vision correcte. Les ingénieurs qui s’acharnent sur le problème des voûtes de 
maçonnerie se débattent laborieusement vers un but connu ; certains l’atteignent, d’autres semblent 
éviter obstinément le bon chemin. Si l’on m’accuse de donner une vision déformée de l’évidence, je 
répondrais simplement que toutes les perles de l’histoires doivent être enfilées sur un lacet de sorte 
que le collier obtenu soit à la fois résistant et beau. Mon fil est celui de la théorie plastique. 

Dans le quatrième chapitre, les méthodes plastiques sont confrontées aux méthodes élastiques 
d’analyse des voûtes de maçonnerie et des techniques sont développées pour évaluer les voûtes 
maçonnées existantes qui seront, je l’espère, utile aux personnes en charge de la maintenance et de la 
réhabilitation de telles constructions. Les exemples donnés dans le cinquième chapitre décrivent 
comment de telles techniques peuvent être utilisées. Ces deux chapitres concluent réellement cette 
monographie. 

Cependant, le très court sixième n’a pas fonction de rembourrage. Il tente de montrer que les 
idées développées pour la maçonnerie des voûtes peuvent être utilisées plus largement, et qu’en fait 
les techniques fondées sur les principes de plasticité tendent à être universellement valables. La 
question est technique. La règle du tiers médian, remplacée ici par le concept équivalant et plus large 
du facteur géométrique de sûreté, fournit des solutions pour les voûtes en dépit du fait que l’une des 
trois équations majeures de l’analyse structurelle a été laissée de côté. Celle qui n’est pas nécessaire 
est l’équation exprimant la géométrie de la déformation. Les équations d’équilibre sont suffisantes 
pour déterminer la sûreté des arcs et l’ingénieur est ainsi ramené à sa première tâche, à savoir à 
construire un état d’équilibre plausible et satisfaisant sur lequel baser son dessin. 

L’ingénieur a parfois besoin qu’on lui rappelle cela. Sa façon de penser peut être tellement 
conditionnée par les concepts de la théorie élastique conventionnelle qu’il n’est pas toujours 
conscient des limites de ses calculs. En effet, la théorie élastique ne fournit pas un état d’équilibre 
possible pour une structure, mais elle en donne seulement un parmi un nombre infini pour n’importe 
quelle structure qui est statiquement indéterminée. Caché au cœur de la théorie élastique et sous les 
capots des ordinateurs ou de l’analyse des éléments finis basés sur la théorie élastique, se trouvent 
des idées de compatibilité de la déformation. L’ingénieur est obligé de fournir des informations, par 
exemple à propos des conditions au niveau des sommiers (at the abutments of an arch), avant qu’une 
analyse élastique ne puisse être mise en œuvre. 
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 En outre, comme précisé au Chapitre 2, l’ingénieur ne connaît ni les conditions aux sommiers 
(at the abutments) ni même si la structure a été forcée was forced together au moment de sa 
construction, de sorte qu’elle subit des contraintes même en l’absence de charges. Il devra prendre 
pour principe, afin de faire fonctionner son programme d’ordinateur, que la structure est initialement 
non-contrainte et que (les piedroits) the abutments sont rigides (or qu’ils ont une certaine réponse 
élastique) ; mais ce sont des postulats dont la validité est inconnue et qui peuvent tout de même avoir 
un effet important sur les résultats produits par l’ordinateur. 

L’analyse des arcs par la théorie plastique montre que leur sûreté ne dépend ni des conditions 
précises at the abutments, ni du fait que les arcs étaient ou non construits à l’origine pour 
correspondre parfaitement à those abutments. Le dessinateur n’a pas besoin d’informations à propos 
de ces imperfections géométriques ; il a une méthode alternative d’analyse qui est toujours sûre, 
grâce aux théorèmes de la plasticité. Et cette méthode peut être appliquée aussi bien eu fer qu’à des 
voûtes de maçonnerie. 
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1 
 
La règle du tiers-médian (The middle-third rule) 
 
 
 
En 1746, William Edwards, un maçon, s’engagea à construire pour £500 un pont sur le Taff à 
Pontypridd. Ces tentatives pour mener à bien ce contrat illustrent quelques unes des difficultés que 
rencontre le dessinateur de voûtes de maçonnerie. 

Le premier pont comptait trois ou quatre travées et résista deux ans et deux mois. L’un (au 
moins) des piliers était dans la rivière et une inondation fit tomber le pont, probablement à la suite de 
l’érosion de ses fondations. William Edwards qui devait, selon son contrat, fournir un pont qui 
durerait sept années décida alors d’enjamber la rivière avec une seule travée (mesurant plus de 42 m). 
Quand cette arche fut quasiment terminée, le cintrage (centering) en bois s’effondra, soit à cause du 
trop grand poids de la maçonnerie, soit parce qu’une inondation fut encore la cause d’une surcharge 
imprévue. 

Le troisième pont, de 1754, était fait d’une maçonnerie plus légère basée sur un coffrage plus 
solide. L’arche (arch ring) fut terminée en septembre et le coffrage fut enlevé ; le travail se poursuivit 
par la maçonnerie des murs-allège (the spandrel walls) et la pose des épaules (filling the haunches) 
terminant la chaussée. Alors que ce travail était en cours, au mois de novembre, l’arche s’effondra, la 
clé subissant des contraintes ascendantes. Il n’y avait pas d’erreur dans les arcs-boutants (abutments 
of the arch) ou de contrainte trop forte de la  maçonnerie ; l’arche n’avait apparemment pas la bonne 
forme pour soutenir son propre poids. 

William Edwards tira évidemment des enseignements de cet effondrement, et il put modifier 
le dessin de son quatrième et dernier pont, lequel est toujours debout. La charge au sommet fut 
augmentée et celle aux épaules (at the haunches) diminuée par le percement de larges ouvertures 
cyclindriques, (Fig. 1.1). L’arche résultante est très élancée avec une épaisseur d’environ 760 mm 
seulement au sommet, et un petit peu moins aux épaules (at the haunches), où le remblai (fill) est 
retouché pour permettre les ouvertures cylindriques. (Les murs du parapet font paraître la hauteur du 
pont sur la Fig. 1.1 plus importante qu’elle n’est en réalité.) On peut concevoir que la marge de 
sécurité de cette structure élancée est faible et il n’est pas étonnant que la troisième arche se soit 
effondrée durant sa construction. 

 

 
Fig. 1. 1 Le quatrième pont de William Edwards à Pontypridd. 
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Le terme ‘marge de sécurité’ est assez vague ; le sens de la phrase précédente est 
probablement clair, mais aucune précision quant au poids n’est associée à ce terme. Si le troisième 
pont s’est effectivement effondré, comme il est décrit, après une dislocation majeure et sans aucune 
surcharge préalable (overstressing) du matériau, il semblerait alors que l’estimation de la ‘sûreté’ du 
pont ne dépende pas (du moins pas de manière significative) de la résistance du matériau. En 
revanche, la sûreté d’une arche pourrait sans doute être reliée à sa forme ; c’est alors une question de 
géométrie, et non pas ‘de contraintes et de déformations’ d’une théorie moderne de construction. 

Comme nous allons le voir, une approche géométrique de l’étude des voûtes comprend des 
antécédents historiques respectables. Le propos de ce livre est de construire sur ces antécédents, en 
utilisant si nécessaire des techniques récents d’analyse, et de tenter d’établir une théorie à propos des 
voûtes de maçonnerie reposant en grande partie sur la géométrie. Les hypothèses nécessaires à 
l’analyse seront établies en temps voulu. En clair, les voûtes étudiées sont d’une taille modeste de 
sorte qu’il n’y a pas de problème d’écrasement du matériau ; une voûte en pierre (an arch of any 
reasonable stone), assemblée avec ou sans mortier, peut supporter sans encombre les charges qui lui 
sont imposées. De plus, il n’y aura pas de débat sur le dessin des arcs-boutants (abutments of the 
arch) ; il sera admis qu’ils sont suffisamment solides pour résister, sans nécessairement être 
absolument rigides, à une quelconque poussée appliquée. 

L’étude s’intéresse aussi à la voûte elle-même : quelle est la meilleure forme pour une voûte 
devant supporter des charges données ? de quelle épaisseur devrait être l'arch ring ? quelle charge 
peut supporter un pont médiéval donné ? 

 
DEFINITIONS 

 
Une voûte de maçonnerie est construite sur un étaiement provisoire, ou un cintrage. Ce cintrage est 
traditionnellement une poutre et il faut prévoir au moyen de coins ou de dispositifs similaires de 
retirer les étais une fois la voûte terminée. 

The arch ring lui-même qui est la pièce de base pour la construction du pont est composé de 
voussoirs en forme de coins (Fig. 1.2). Les voussoirs doivent être taillés avec beaucoup de soin pour 
une voûte à large travée et assemblés avec un minimum de mortier ; pour des voûtes plus petites, on 
pourra utiliser des pierres taillées plus grossièrement avec des joints de mortier plus épais pour 
combler les irrégularités de la construction. Dans le cas de Pontypridd, les voussoirs sont très fins 
(Fig. 1.3), et ils doivent absolument être en forme de coins pour permettre la faible courbure du arch 
ring. 

 

 
Fig. 1.2 Les différentes parties d’un pont maçonné. 

 
En revanche, le pont voûté à voussoirs classique a une section (ring) formée de pierres 

relativement épaisses ; la Fig. 1.4 montre le Clare College Bridge, dessiné en 1638. La clé de voûte a 
une signification particulière dans la construction ; c’est la dernière pierre posée et, lorsque la voûte 
est complète on peut alors la décoffrer. La clé de voûte est souvent, mais pas toujours, mise en valeur 
visuellement par le dessinateur en raison de sa fonction dans la construction. En fait son rôle dans la 
structure est le même que celui de chacun des voussoirs, comme un maillon d’une chaîne n’est pas 
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différent des autres maillons. Les maillons de la chaîne transmettent la tension le long de la chaîne ; 
les voussoirs dans une voûte transmettent la compression au cœur de la voûte. Cette analogie naïve 
entre voûte et chaîne peut sembler tout à fait triviale mais a en fait une importance capitale. 
 

 
Fig. 1.3 Voussoirs et parapet à Pontypridd (photographié par Ted Ruddock, 

reproduit avec l’autorisation de l’University Cambridge Press). 
 
Une fois que le voûte est terminée on peut commencer à retirer le coffrage. Au moins un 

partie du remblai (some of the fill) doit être placée au-dessus des extrados de la voûte au niveau des 
abutments (et des piliers intérieurs) afin de stabiliser the arch ring. Cependant, la plus grande partie 
du poids total de la voûte de maçonnerie réside dans ce remblai non-structurant (non-structural fill) et 
il est très important de décoffrer la voûte avant que le poids imposé aux étais (the falsework) ne rende 
ceci difficile. L’équilibre de la voûte peut alors devenir précaire et il faut prendre soin à conserver la 
symétrie et à équilibrer les charges tout au long des travées. Le troisième pont de Pontypridd était 
trop chargé aux épaules (at the haunches) et trop peu au sommet (at the crown). Le pont de Clare 
College, Fig. 1.4, a manifestement été construit avec un mauvais équilibrage, et le pilier côté ouest 
dans le lit de la rivière a basculé pendant la construction, entraînant le fléchissement de la chaussée 
sur la travée centrale. 

 

 
Fig. 1.4 Clare College Bridge, Cambridge; Thomas Grumbold, 1638-40. 
On remarque le fléchissement au sommet (crown) de la travée principale. 

 
Dans un petit pont, le remblai peut être composé de maçonnerie de blocage (rubble=moellon), 

de terre ou de gravier or hoggin, amassés jusqu’à la hauteur voulue pour supporter la surface de la 
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route. Le remblai est maintenu par des murs-allège (spandrel walls) construits sur the arch rings sur 
les deux faces du pont. Le remblai n’agit pas sur la structure bien qu’en pratique, une charge 
appliquées sur la surface de la route puisse ‘se répandre’ (may 'spread') au travers du remblai avant 
qu’il ne s’applique aux extrados de la voûte. Dans des ponts plus grands, une série de murs maçonnés 
parallèles peuvent être construits sous les épaules (over the haunches), et ces murs-allège (spandrel 
walls) vont supporter la chaussée. 

L’élévation représentée sur la Fig. 1.2 peut être également considérée comme une coupe 
transversale du pont (The elevation of Fig. 1.2 may be taken equally as a section through the bridge). 
Les arch rings parallèles ne sont pas nécessairement indépendants ; les voussoirs ont habituellement 
des longueurs axiales (axial lengths) différentes, de sorte que les arch rings voisins les verrouillent et 
forment une voûte en berceau prismatique continue (continuous prismatic arch barrel). Cependant, on 
ne peut pas en déduire que l’épaisseur de the arch ring visible sur la face externe du pont représente 
l’épaisseur du berceau entre les faces. Clare College Bridge, Fig. 1.5, par exemple, semble avoir an 
arch ring d’une épaisseur radiale constante de 0,30 m. En fait, derrière ces voussoirs apparents la 
maçonnerie est moins bien taillée et mesure seulement  0,15 m d’épaisseur ; l’arche principale est en 
réalité moitié moins épaisse que ce qu’elle paraît. Cette supercherie n’est pas réalisable dans le cas de 
travées plus larges. 
 

 
Fig. 1.5 Clare College Bridge, Cambridge. L’épaisseur des voussoirs apparents est de 0,30 m, 

mais celle du berceau principal (main barrel) n’est que de la moitié. 
 
Les problèmes résultants sont les suivants. Le profil et l’épaisseur d’un arc sont connus, de 

même que les charges ; charges mortes dues au poids propre de la voûte et du remblai, et charges 
utiles apportées par le trafic. (La ‘plus mauvaise’ position sur le pont pour placer des charges vives 
données devra être déterminée) Comment le pont supporte-t-il ces charges ? Quelles sont les forces 
entre les voussoirs ? Quelle est la poussée sur les sommiers (abutments) ? Avec des techniques 
permettant de répondre à ces questions et à des questions similaires, on peut estimer la sécurité d’un 
pont donné ou dessiner une voûte pouvant supporter une charge connue. 
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LE POLYGONE FUNICULAIRE 

 

 
Fig. 1.6 

 
Un outil bien connu d’analyse des voûtes est le polygone funiculaire dont la construction sera rendu 
claire grâce à un exemple simple. La Fig. 1.6 représente trois forces parallèles W1, W2 et W3 (qui 
seront interprétées plus loin comme représentant un système simple de charges sur un pont) ainsi que  
deux autre forces parallèles R1 et R2 appliquées aux points A et B. Le système est supposé en 
équilibre, de sorte que 

 
, (1.1) 

 
Une seconde équation représente l’équilibre des moments. Si l’on imagine les forces W 

comme appliquées sur une chaînette de poids négligeable (Fig. 1.7(a)) le profil de la chaînette peut 
alors être déterminé graphiquement. En supposant que la composante horizontale H de la tension de 
la chaînette est connue, alors un triangle de forces (Fig. 1.7(b)) donne la direction du segment AP de 
la chaînette. 
 

 
Fig. 1.7 

 
Le segment PQ de la chaînette est soumis à la même force horizontale H et à une force 

verticale (R1 - W1) ; la Fig. 1.7(c) représente la construction permettant de trouver la direction de la 
chaînette (et la valeur T2 de la tension). Les Figs. 1.7(b) et (c) peuvent clairement être combinées, et 
la Fig. 1.7(d) montre le polygone des forces complet correspondant aux charges W1, W2 et W3 et les 
réactions R1 et R2 ; dans ce cas particulier de charges parallèles, le polygone des forces correspond à 
la ligne verticale représentée associée à la ligne horizontale qui représente la composante horizontale 
H de la tension de la chaînette. Il est clair que la construction de la Fig. 1.7(d) satisfait (1.1). Le point 
O du polygone des forces est situé à une distance H de la ligne verticale et les lignes issues de O 
radiating from O donnent la direction des différents segments de la chaînette. 

 

W1 +W2 +W3 = R1 + R2
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Du point de vue de la statique, les problèmes de la chaînette pendante et de la voûte sont les 
mêmes. La Fig. 1.8 correspond exactement aux Figs. 1.7(d) et (a), et l’on voit qu’un assemblage de 
tronçons droits weightless AP, PQ, QR et RB tenus par leurs extrémités pourrait être disposés de 
manière à transmettre les charges W1, W2 et W3 aux sommiers A et B, les tronçons travaillant en 
compression (tandis que la chaînette de la Fig. 1.7 est en tension). L’assemblage des tronçons serait 
en équilibre bien que l’équilibre soit instable. Le polygone funiculaire APQRB représente la ligne de 
poussée dans une voûte supportant les charges W1, W2 et W3 ; c’est l’épaisseur des voussoirs qui 
entourent la ligne de poussée qui confère sa stabilité à la voûte. 

Les polygones funiculaires des Figs 1.7(a) et 1.8(b) ont été dessinés en partant du principe que 
la valeur de la réaction horizontale H (traction pour la chaînette, compression pour la voûte) était 
connue. Sur la Fig. 1.9 on a retracé la Fig. 1.8 à laquelle on a superposé un autre polygone funiculaire 
correspondant à une plus petite valeur de H, dite H '. 

Il ressort de l’étude des triangles de forces telle que celle réalisée sur la Fig. 1.7(b) que le 
polygone funiculaire AP'Q'R'B de la Fig. 1.9(b) est une version étirée du polygone initial APQRB, et 
que les ordonnées dans chaque section sont dans le rapport H/H ', c’est-à-dire 

 

, (1.2) 
 
(En ce qui concerne l’analogie de la chaînette, une chaînette plus longue supportera son poids 

avec une traction horizontale plus faible ; une voûte à faible courbure (shallow arch) subira des 
poussées plus fortes à ses sommiers qu’une voûte dont l’élévation est plus importante.) 

 

 
Fig. 1.8 

 
On a supposé en dessinant les polygones funiculaires des Figs. 1.7, 1.8 et 1.9 que la statique 

avait préalablement été calculée afin de s’assurer de l’équilibre du système ; c’est-à-dire que les 
valeurs des réactions R1 et R2 avaient été déterminées avant de commencer le dessin. Comme le 
montre la Fig. 1.10, cette analyse préliminaire n’est pas nécessaire. Sur cette figure, les valeurs des 
charges W1, W2 et W3 sont les mêmes que précédemment, mais le point O du polygone des forces a 
été placé de façon aléatoire. Le polygone funiculaire correspondant APQRS est alors tracé à partir du 
point A fixé et il apparaît que le point S ne coïncide pas avec le point B. Cependant, le polygone 
funiculaire peut être ramené à la forme des Figs. 1.8 et 1.9 en traçant le segment AS. La parallèle OX 
dans le polygone des forces l’emplacement du point O' pour lequel le polygone funiculaire 
correspondant passe par A et B. De plus, on peut remarquer que les polygones funiculaires APQRS et 
AP'Q'R'B ont mêmes les dimensions dans le plan vertical est qu’ils sont reliés par un cisaillement 
pur, c’est à dire un déplacement tangentiel sans modification des longueurs des segments. 

 

¢ P p
Pp

=
¢ Q q

Qq
=

H
¢ H 
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Fig. 1.9 

 
 

 
Fig. 1.10 

 
Les Figs. 1.9 et 1.10 illustrent une méthode totalement graphique pour tracer un polygone 

funiculaire en passant par trois points donnés. Si en plus des points A et B on fait passer le polygone 
funiculaire de la Fig. 1.10(b) par un point Q" donné, le point O' du polygone des forces de la Fig. 
1.10(a) sera déplacé horizontalement jusqu’en O", où 

 

, (1.3) 
 

L’ARC À TROIS ARTICULATIONS (PIVOTS) 
 
L’axe médian d’une voûte est représenté sur la Fig. 1.11 ; ni la voûte ni sa charge ne sont 
nécessairement  symétriques. Les deux moitiés de la nervure d’arc (arch rib) sont reliées entre elles et 
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aux sommiers (abutments), par des pivots (pins) sans frottements. Une telle voûte à trois pivots est 
biensûr une forme de construction parfaitement satisfaisante ; de plus, la voûte est calculée et statique 
et (par exemple) les réactions en A et B dues aux charges W1 etc. peuvent être déterminées en une 
seule étape en décomposant (resolve) les forces et en en mesurant (taking) les moments. (On notera 
au passage que les valeurs de ces réactions ne seront pas affectées par de faibles mouvements des 
sommiers (abutments). Tant que la géométrie globale de la voûte est peu modifiée, les équations 
statiques seront également peu modifiées.) 

 

 
Fig. 1.11 

 
Pour éviter d’avoir à écrire les équations statiques, les réactions peuvent être déterminées 

graphiquement. On verra immédiatement que les lignes de poussée dans la voûte, c’est-à-dire le 
polygone funiculaire, doivent passer par les trois pivots (pins), de sorte que les techniques illustrées 
par la Fig. 1.10 pourront être utilisées pour tracer les diagrammes de la Fig. 1.12. 
 

 
Fig. 1.12 
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Fig. 1.13 

 
On remarque que la ligne de poussée de la Fig. 1.12(b) ne coïncide pas, excepté au niveau des 

trois pivots, avec l’axe médian de la voûte et on peut en déduire une interprétation structurale simple. 
Sur la Fig. 1.13(a) l’arc (arch rib) a été ‘coupé’ à une distance horizontale x du pivot de sommier 
(abutment pin) A et les forces horizontale et verticale ainsi que le moment de flexion M ont été tracés 
à l’intersection en respectant l’équilibre. En développant (By taking) les moments, on trouve 
 

, (1.4) 
 
soit, en réarrangeant, 

 

, (1.5) 
 
La Fig. 1.13(b) représente le segment correspondant de la ligne de poussée et l’on voit que la quantité 
R1x/H est égale à l’ordonnée notée y'. La Fig. 1.13(c) représente à la fois l’axe médian de la voûte et 
la ligne de poussée et la relation (1.5) ce qui implique que le moment de flexion dans l’arc (arch rib) 
est égal à la composante horizontale (H) de la poussée sur les sommiers (abutment thrust) multipliée 
par la distance verticale entre l’arc (arch rib) et la ligne de poussée. 

Cette propriété a été démontrée dans les Figs. 1.12 et 1.13 en se référant à une portion 
particulière de la voûte, mais elle est en fait générale. Les distances verticales entre l’axe médian de 
la voûte et la ligne de poussée de la Fig. 1.12(b) donnent, dans une certaine mesure, les moments de 
flexion au cœur de l’arc (arch rib). De plus, comme un pivot sans frottements ne peut pas transmettre 
un moment de flexion, la ligne de poussée doit effectivement passer par les pivots A, B et C. 

Comme le montre la Fig. 1.12(b), les moments de flexion dans la moitié gauche de la voûte 
fléchissent (are sagging) (on note que les charges W1 et W2 sont plus grandes que les autres), alors 
que les moments de flexion dans la moitié droite ont une flèche négative (are hogging). (Les signes 
des moments de flexion peuvent être vérifiés au moyen d’un simple exemple idéalisé. Dans la Fig. 
1.14 une seule charge ponctuelle agit (a single point load acts) sur la voûte. La ligne de poussée 
correspondante dont la forme est équivalente à celle de la chaînette pendante doit correspondre aux 
deux lignes droites représentées.) 

 

M = -Hy+ R1x

M = H R1
H
x - yæ 

è 
ö 
ø 
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Fig. 1.14 

 
LA RÈGLE DU TIERS MÉDIAN 
 
Les charges et les constructions des Figs. 1.11 et 1.12 étaient  appliquées à une voûte à trois pivots. 
La Fig. 1.15 représente les mêmes charges appliquées à un arc à voussoirs ayant le même axe médian 
que précédemment et la Fig. 1.16 représente le polygone funiculaire de la Fig. 1.12(b) dessiné pour la 
voûte de la Fig. 1.15. Evidemment, le polygone funiculaire représente une ligne de poussée en 
équilibre avec les charges données ; en général, cette ligne de poussée ne sera pas symétrique, ni 
même placée de façon symétrique à l’intérieur de la voûte. 
 

 
Fig. 1.15 

 

 
Fig. 1.16 

 
L’hypothèse selon laquelle la ligne de poussée équilibre les charges peut être poursuivie. Si 

l’on ‘coupe’ la voûte en un point, par exemple le long du joint entre deux voussoirs, l’équilibre peut 
être maintained en introduisant une poussée au niveau de la coupe transversale agissant le long de la 
ligne du polygone funiculaire. Deux coupes ont été faites sur la Fig. 1.17 et la section de voûte est en 
équilibre sous l’action des forces tracées. On verra que la poussée dans la voûte n’est pas 
nécessairement transmise suivant la normale aux faces en culée (abutting faces) des voussoirs. Au 
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contraire, il existe une force normale à chaque section couplée à une force tangente (tangential force) 
et la seconde tend à faire glisser un voussoir sur l’autre. Cet effet de glissement instantané est faible 
et on le négligera entre une pierre et la suivante ; la question est traitée plus en détails dans le 
Chapitre 2. La question présente est celle de la poussée normale. 
 

 
Fig. 1.17 

 
Pour permettre une meilleure compréhension des actions structurales (structural action), la 

Fig. 1.18(a) représente un empilement de dalles de pierres identiques (dalles de pavement) posées 
l'une sur l'autre sans mortier de liaison. Les dalles elles-mêmes sont supposées élastiques et reposent 
sur une base rigide ; elles sont surmontées d'une dalle rigide à laquelle sera appliquée une charge 
verticale. Ainsi, sur la Fig. 1.18(b) une charge ponctuelle est appliquée au centre de l'empilement de 
dalles ; la théorie élémentaire de l'élasticité montre que toutes les dalles sont compressée de la même 
manière et qu'une contrainte uniformément distribuée sera transmise aux fondations. Dans la Fig. 
1.18(c), la charge a été quelque peu éloignée du centre et la distribution de contraintes simplement 
prévue par la théorie élastique est représentée. Cette distribution est linéaire et lorsque la charge est à 
la limite du 'tiers médian' (Fig. 1.18(d)) la contrainte devient nulle à un des bords de l'empilement. 

Si l'on continue d'éloigner la charge du centre, Fig. 1.18(e), l'empilement de dalles reste une 
'structure' dans le sens où il peut continuer de supporter la charge appliquée de l'extérieur (externally-
applied load). Cependant, comme les dalles sont supposées assemblées sans mortier, elles ne 
pourront pas transmettre les contraintes de traction et la théorie de courbure élastique en présence de 
forces de compression doit être modifiée. D'après la théorie élastique, la distribution effective de 
contraintes de compression de la  Fig. 1.18(e) est toujours linéaire, mais dans les zones où la théorie 
de courbure prévoirait des tractions, les dalles tendent à se séparer. 
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Fig. 1.18 

 
Ainsi,  si la charge appliquée reste à l'intérieur du 'cœur' de la section, les contraintes seront en 

compression sur toute la section. Pour une section rectangulaire, le cœur a une épaisseur d'un tiers de 
l'épaisseur totale ; si la section a une autre forme, le cœur aura une autre proportion de l'épaisseur 
totale. Pour une voûte en berceau c'est le tiers médian qui est pertinent et des ingénieurs du dix-
neuvième (et du vingtième) siècle ont établi que la 'règle du tiers médian' est une nécessité première 
du dessin. Sur la Fig. 1.16, on aurait la certitude que le dessin est convenable si la ligne de poussée 
pouvait se trouver non pas à l'intérieur de la voûte  (arch ring) mais bien à l'intérieur d'une voûte 
(arch ring) imaginaire plus étroite comme représenté sur la Fig. 1.19, laquelle aurait une épaisseur 
égale à un tiers de l'épaisseur réelle. (on peut noter que si le pole du polygone des forces était 
légèrement déplacé, à la fois horizontalement et verticalement, comme dans la Fig. 1.10, alors le 
polygone funiculaire de la Fig. 1.16 pourrait être déplacé jusqu'à la position tracée sur la Fig. 1.19. 
Ces deux lignes de poussées montrent deux manières différentes d'équilibrer les même charges W sur 
la voûte de la Fig. 1.15.) 
 

 
Fig. 1.19 

 
Le critère du tiers médian a été établi sur le principe que les prévisions de la théorie élastique 

est observée en pratique ; les imperfections du monde réel, ou peut-être un simple coup d'œil à la 
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photographie de la Fig. 1.3, feraient douter de l'existence d'un comportement élastique linéaire. De 
plus, on a considéré que la traction devait être évitée étant donné que l’idée que la fissuration du 
mortier entre les voussoirs serait dangereuse n’a pas été justifiée. En fait la règle du tiers médian est 
parfois, du moins en théorie, assouplie à la règle de la moitié médiane ; l’arc intérieur de la Fig. 1.19 
a été légèrement agrandi. 

La restriction découlant de la Fig. 1.19 semble dériver d’arguments théoriques basés sur des 
suppositions douteuses. C’est néanmoins la bonne restriction à appliquer au dessin d’un pont, comme 
nous le verrons dans le prochain chapitre. En particulier, il pourrait sembler que la voûte réelle de la 
Fig. 1.19 a une sorte de facteur géométrique de sécurité correspondant à la voûte plus étroite. La Fig. 
1.19 représente une voûte à l’intérieur d’une voûte ; si l’on peut montrer, d’une manière ou d’une 
autre, que la voûte la plus étroite est satisfaisante, alors on peut s’attendre intuitivement à ce que la 
voûte réelle soit également satisfaisante. La véracité de cette intuition est également démontrée dans 
le prochain chapitre. 

Une préoccupation sera alors de voir s’il est possible ou non de construire des lignes de 
poussée, c’est-à-dire des polygones funiculaires, qui entrent dans des voûtes de dimensions données. 
De telles démonstrations peuvent être faite de manière purement analytique ; les calculs sont décrits 
plus loin dans ce livre. Il existe cependant une construction élégante qui démontre le problème de 
façon purement graphique. 
 
LA CONSTRUCTION DE FULLER 
 
La voûte de la Fig. 1.15 est représentée par son axe médian (centre line) sur la Fig. 1.20(a) de même 
que la ligne de poussée de la Fig. 1.16 (cf. Fig. 1.12(b)). Cependant, la ligne de poussée de la Fig. 
1.20(a) ne doit pas nécessairement être une ligne particulière ; comme nous le verrons, le point O du 
polygone de forces (Fig. 1.12(a)) peut être placé à n’importe quelle positions convenable pour 
commencer la construction de Fuller. 

La Fig. 1.20(b) fournit les mêmes informations que la Fig. 1.20(a), mais l’échelle horizontale 
a été déformée. Chaque portion de chaque voûte (entre les points de charge) a été étirée ou 
compressée de telle manière que la ligne de poussée prenne simplement la forme de deux lignes 
droites tandis que l’axe médian de la voûte (à l’origine probablement parabolique) a pris la curieuse 
forme tordue représentée. Cependant, les distances verticales entre l’axe médian de la voûte et la 
ligne de poussée sont les mêmes respectivement pour chaque segments sur les Figs. 1.20(a) et (b). 

La dégénérescence du polygone funiculaire en deux lignes droites est la caractéristique 
importante de la construction de Fuller. Pour une série de charges données, une fois la forme 
déformée de la voûte tracée, voir Fig. 1.20(b), le point O du polygone de forces est déplacé, le 
polygone funiculaire continuera d’être représenté pas deux lignes droites ; ceci découle de la question 
discutée plus haut dans ce chapitre des propriétés du polygone de forces et du polygone funiculaire. 

Ainsi, la Fig. 1.20(c) représente le profil déformé de la voûte d’épaisseur limite (corriger le 
texte anglais). On peut désormais déterminer s’il est possible ou non d’équilibrer les charges données 
avec une ligne de poussée inscrite dans la voûte. Il faut simplement démontrer que les deux lignes 
droites (représentées en pointillés sur la Fig. 1.20(c)) peuvent être représentées à l’intérieur de la 
voûte déformée. Ceci est clairement possible pour la voûte représentée, mais également ce ne serait 
clairement pas  possible pour une voûte de plus faible épaisseur. De plus, dans le but de cette 
démonstration il n’est pas nécessaire de positionner un point O correspondant du polygone de forces. 

La Fig. 1.20 a été  redessinée dans une certaine mesure sur la Fig. 1.21. pour des raisons 
pratiques, les réactions verticales aux sommiers ont été déterminées par la statique, de sorte que le 
polygone funiculaire Aa1a2 … a5B a été tracé sur une ligne de base horizontale AB ; les points A et B 
reposent sur l’intrados de la voûte. La valeur de la composante horizontale H de la poussée a été 
choisie arbitrairement. Chacun des points A' et B' sont ensuite pris sur la ligne de base et le polygone 
funiculaire déformé est constitué par les deux linges droites A'a2 et B'a2, où a2 est (comme 
précédemment) le point le plus haut sur le polygone funiculaire. Ainsi le point a5 sur le polygone 
funiculaire original vient en a'5, et le point b5 correspondant sur l’intrados est déplacé de la même 
distance horizontale en b'5. 
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Fig. 1.20 

 
Les lignes de construction sont représentées sur la Fig. 1.21 uniquement pour les intrados, 

mais les extrados déformés sont aussi représentés. Une fois de plus, la Fig. 1.21 contient les mêmes 
informations que la Fig. 1.20(c). Pour la voûte réelle, un polygone funiculaire avec des charges 
données peut être dessiné et complètement inscrit dans la maçonnerie si, sur la Fig. 1.21, deux lignes 
droites peuvent être tracées dans l’épaisseur de la voûte déformée. 

 
L’idée qu’une voûte doit avoir une épaisseur minimale pour supporter une ligne de poussées 

pour des charges données (et la possibilité de déterminer cette épaisseur minimale) est la clé pour 
établir un facteur de sécurité pour des constructions pratiques. Ceci va être discuté dans le chapitre 
suivant. 
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Fig. 1.21 
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2 
 
Les théorèmes plastiques 
 
 
 
La théorie des structures est basée sur l’établissement de trois différents types d’équations. En 
premier lieu il faut faire des hypothèses pour exprimer le fait qu’une structure donnée est en équilibre 
sous des charges appliquées données. Deuxièmement il est possible d’établir des hypothèses sur les 
déformations de  la structure. Enfin, il peut être nécessaire d’introduire dans l’analyse les propriétés 
matérielles de la structure. Ainsi dans l’analyse élastique conventionnelle les forces internes peuvent 
s’écrire en terme de charges appliquées à l’extérieur ; les déformations internes peuvent être calculées 
comme étant linéairement dépendantes des forces internes, et les déplacements de la structure qui en 
résultent doivent être compatibles avec n’importe quel (internally or externally imposed restraints). 
Une structure est statiquement déterminée si les forces internes peuvent être établies immédiatement 
par de simples considérations d’équilibre en termes de charges appliquées ; elle est statiquement  
indéterminée si des forces ne peuvent pas être établies de cette façon. Ce livre ne traite pas des 
solutions élastiques pour des structures statiquement indéterminée, mais il faut noter que ces 
solutions peuvent être établies de différentes manières et que les trois types de master equation 
peuvent être utilisées en termes de différentes quantités inconnues. 
 On a remarqué que la voûte de la Fig. 1.11 (supposée avec trois attaches sans frottements) était 
une forme statiquement indéterminée de structure. Pour une charge W1, W2… donnée, les réactions en 
A et B peuvent être établies de sorte que la charge extérieure soit parfaitement déterminée. Le 
polygone funiculaire de la Fig. 1.12(b) est unique puisque il est obligé de passer par les trois points 
A, B et C (c’est-à-dire que la position du point O du polygone de forces de la Fig. 1.12(a) peut être 
déterminée sans ambiguïté) ; ainsi les forces internes, par exemple le moment de courbure de chaque 
section de la voûte, peuvent être évaluées directement. Tous ces calculs peuvent être faits sans faire 
référence à des notions de déformation et sans informations sur les propriétés du matériau constituant 
la voûte. Ainsi il n’est pas nécessaire de faire d’hypothèses sur les déformations internes de la voûte 
ni de restrictions sur les déplacements. 

Cependant, ces remarques sous-entendent, selon le postulat habituel de la théorie structurale, 
que les déplacements sont petits. L’axe médian de la voûte de la Fig. 1.12(b) ne doit pas 
nécessairement conserver exacement sa forme originale lorsqu’elle est chargée et les sommiers A et 
B peuvent éventuellement give way slightly under the abutment thrust. Ces déformations ne sont 
cependant pas assez importantes pour être remarquées ; put in a loose way l’aspect déformé de la 
voûte chargée est suffisamment semblable à l’aspect original pour qu’il ne soit pas nécessaire de 
prendre en compte les modifications de géométrie lorsqu’on établit les équations d’équilibre. 

On peut biensûr évaluer numériquement de telles restrictions sur les déformations. Dans 
l’optique de cette analyse, il faut admettre qu’un déplacement d’un point quelconque sur l’axe 
médian de la voûte d’un millième du span ou d’un centième du span will not upset les équations 
d’équilibre. Cependant le fait que les équations d’équilibre sont très peu affectées ne définit pas à ce 
stade les effets que ces petites déformations pourraient avoir sur le comportement général de la voûte. 
Does a small spread des sommiers, même invisible à l’oeil nu, cause harm à la voûte ? Quel est 
l’effet d’un pilier enfoncé dans une rivière différemment de ses voisins ? Nous allons voir que la 
théorie plastique fournit des réponses à ces questions (fairly strong answers to such questions). 
 
LE PROBLÈME STRUCTURAL 
 
Toute théorie des structures, qu’elle soit élastique ou plastique, doit traiter des cas statiquement 
indéterminés. C’est-à-dire qu’il n’y a en principe pas de difficultés à utiliser les forces internes 



 21 

statiquement déterminées de la voûte de la Fig. 1.12(b) pour calculer les déplacements (en supposant 
que les propriété du matériau sont connues) et le dessinateur peut déterminer facilement les 
magnitudes des contraintes ou de n’importe quelle autre quantité significative. By contrast, the arch 
of Fig. 1.15, having the same centre line and carrying the same loads as the three-pin arch, is 
statically-indeterminate. The line of thrust may be close to that sketched in Fig. 1.16, but there are no 
longer three fixed points which can be used to locate it. The prime structural problem, stated here in 
terms of the voussoir arch, consists in fact in determining the position of the line of thrust, so that the 
internal structural forces can be found. 

The other structural equations must of course be used in order to solve the problem. That is, 
the equilibrium statement for the voussoir arch is represented by the funicular polygon and by the 
force polygon, but no information is provided from considerations of statics which may be used to 
determine the position of the pole O of the force polygon (as, for example, in Fig. 1.12(a)). All that 
can be determined from statics is the general shape of the line of thrust in Fig. 1.16, but not its precise 
location. 

For the purpose of a plastic analysis, as opposed to an elastic analysis, of the voussoir arch, 
very little need be said concerning the deformation of the structure. As noted above, displacements 
will be assumed to be small, but a general analysis of the strains suffered by the arch is not necessary. 
As will be seen, the geometry of the way an arch might collapse must finally be studied, and in fact 
this study helps to determine possible positions for the funicular polygon. 

The material properties of the masonry in a voussoir arch must be defined carefully, to 
provide the third of the statements necessary for the establishment of a theory of structural action. 
There are three key assumptions: 
 
Sliding failure cannot occur 
It is assumed that friction is high enough between voussoirs, or that the stones are otherwise 
effectively interlocked, so that they cannot slide one on another. It turns out that this is a perfectly 
reasonable assumption, although it is certainly possible in practice to find occasional evidence of 
slippage in a masonry structure. 
 
Masonry has no tensile strength 
Although stone itself has a definite tensile strength, the joints between voussoirs may be dry or made 
with weak mortar. Thus the assumption implies that no tensile forces can be transmitted within a 
mass of masonry. In accordance with common sense, and with the principles of the plastic theorems 
(which are discussed below), this assumption is 'safe'; it may be too safe, that is, unrealistic if, for 
example, the interlocking of the stones which prevents sliding also enables tensile forces to be 
transmitted locally. 
 
Masonry has an infinite compressive strength 
This assumption implies that stresses are so low in masonry construction that there is no danger of 
crushing of the material. The assumption is obviously 'unsafe', but it is not, in fact, at all unrealistic. 
It is found that, for a wide range of bridges of the type considered here, mean stresses are indeed low; 
clearly check calculations must be made for any given structure. General implications of this 
assumption are pointed out below. 
 

Thus a picture emerges of masonry as an assemblage of stones cut to pack together in a 
coherent structural form, with that form maintained by compressive forces transmitted within the 
mass of the material. These forces will arise, in the 'dead' state of the structure, from the self-weight 
of the material and (for example) from the weight of any superincumbent fill in the spandrels of the 
arches of a bridge. Live loading will equally be carried by compressive forces, and in all cases these 
forces are supposed to be high enough for friction to provide interlocking against slip. 

The question then arises as to how such a masonry assemblage might fail in any meaningful 
structural sense. If the masonry is infinitely strong, then it would seem that a calculation of levels of 
stress will not lead to a criterion of failure. The idea that tension is not permissible is, however, 
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significant. In Fig. 2.1(a) the joint Mm between two particular voussoirs has somehow been 
identified as a 'critical' joint (how the joint is identified will be seen later). It would seem that the 
joint could be considered critical if the thrust transmitted between the voussoirs approached the 
surface, as say the extrados m, permitting the 'hinge' of Fig. 2.1(b) to form. (Equally, a hinge might 
form by turning about the point M in the intrados.) The hinge of Fig. 2.1(b) corresponds to the final 
limit of the sequence shown in Fig. 1.18, in which the eccentric load has reached the edge of the pile 
of paving slabs. 
 

 
Fig. 2.1 

 
Now the stress resultants, that is, the structural action at any joint such as Mm between 

voussoirs, will be specified in terms of the magnitude, direction and point of application of the force 
transmitted across the joint. In fact, if the tangential component of the force is not of importance 
(since slip is assumed not to occur), then what is needed is a knowledge of the value of the normal 
force N across the joint together with the value of its eccentricity (say e) from the centre line. It is 
convenient to work, temporarily, with a 'bending moment' M = Ne as the second variable, so that the 
stress resultants N, M define the state of the structure at any particular section. 

The hinge of Fig. 2.1(b) will form when the eccentricity e of the normal thrust just has the 
value h, that is when M = hN. The lines M = ±hN are shown as OA and OB in Fig. 2.2, and they 
represent, for any given joint between voussoirs, the condition that a hinge is in existence. A general 
point (N, M) in Fig. 2.2 which lies within the open triangle AOB represents a thrust passing between 
voussoirs at an eccentricity less than h, that is, the line of thrust lies within the masonry at that point 
and no hinge is forming. If the general point lies on OA or OB, then a hinge is forming in either the 
extrados or the intrados of the arch, and the thrust line lies in the surface of the masonry. The general 
point cannot lie outside the open triangle AOB, since equilibrium across the joint would then be 
impossible for a material assumed to be incapable of carrying tension. 
 

 
Fig. 2.2 

 
The construction of Fig. 2.2 involved the assumption that the masonry had infinite 

compressive strength. As the line of thrust approaches the edge of a voussoir (cf. Fig. 1.18(e)), so the 
stress on the diminishing area of contact will increase, and a real stone with a finite crushing strength 
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will not permit the sort of line contact at a hinge illustrated in Fig. 2.1(b). Thus the lines OA and OB 
in Fig. 2.2 cannot quite be reached; they are replaced by the slightly curved lines of Fig. 2.3. The full 
boundary is formed by the parabolic arcs OCD, OED in Fig. 2.4, and the general point (N, M) 
representing the thrust at any point in the arch is constrained in reality to lie within this boundary. 

The assumption of generally low mean compressive stresses in fact constrains the point (N, 
M) to lie within an area such as OCE in Fig. 2.4; it is this area which is enlarged in Fig. 2.3, and for 
which the real curved boundaries depart only slightly from the approximately straight lines. 
 

 
Fig. 2.3 

 

 
Fig. 2.4 

 
The constraining boundaries of Figs. 2.2, 2.3 and 2.4 are examples of yield surfaces in the 

theory of plasticity, and the whole discussion can now be pulled within the framework of that theory. 
Figure 2.2 will be used as the basis for the development of the principles, although the results will 
clearly be slightly unsafe. They may in fact be made absolutely safe by the device sketched in Fig. 
2.5. If it is thought that the mean axial stresses will not exceed say 10% of the crushing strength of 
the material, then the straight lines OA, OB of Fig. 2.2, that is, M = ±hN, may be replaced by the 
straight lines OC, OE of Fig. 2.5, given by M = ±0.9 hN (cf. Fig. 2.3). Thus the real arch having a 
(local) ring depth of 2h is replaced, for the purposes of analysis, by a hypothetical arch of depth 2 
(0.9h); this kind of 'shrinking' is, as will be seen, of some importance in the gauging of the safety of 
masonry arches. The assumption that mean stresses are less than 10% (or any other percentage) of the 
crushing strength can be checked at the end of the calculations. 
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Fig. 2.5 

 
Thus it will be assumed that the general point (N, M) is confined to lie within the open 

triangle AOB in Fig. 2.2. This implies, as has been seen, that the thrust line for the arch must lie 
within the masonry. In turn, this means that the pole O of the force polygon must be located in such a 
position that the corresponding funicular polygon (that is, the thrust line) does indeed lie within the 
masonry. No guidance, other than this requirement, has yet been given for locating the 'actual' 
position of the pole O and the corresponding 'actual' position of the thrust line. (The reason for 
suspicion as to the use of the word 'actual' will become clear.) 

However, a very powerful statement can be made by translating the 'safe' (or lower-bound) 
theorem of plasticity into terms applicable to masonry. It is this: If a thrust line can be found, for the 
complete arch, which is in equilibrium with the external loading (including self weight), and which 
lies everywhere within the masonry of the arch ring, then the arch is safe. The importance of this 
theorem lies in the fact that the thrust line found in this way needs not be the actual thrust line. To 
demonstrate that the arch will stand as a structure it is necessary to show only that there is at least one 
satisfactory internal force system; viewed anthropomorphically, the arch is at least as clever as the 
analyst, and it will discover for itself an equally satisfactory position for the pole of the force 
polygon. 

The conclusions of the safe theorem are positive; having found any one satisfactory thrust 
line, the designer knows that his arch cannot collapse, and he is relieved of any necessity to examine 
possible modes of failure. This anti-insomnious comfort of the safe theorem has always been 
appreciated by the experienced designer, even if he has not been able to formulate precisely that 
theorem on the basis of plastic theory. It is the designer's job to derive a 'reasonable' set of 
equilibrium forces on which to base his calculations, and he is accustomed to using whatever aids he 
can to arrive at values for those forces. 

Thus to assess the actual state of a masonry arch, the traditional elastic approach will make 
certain assumptions about the abutments, for example that they are rigid, or that they give way 
according to certain specified rules when subjected to load. With some definite assumptions of this 
sort, an elastic analysis can be made of the structure (or indeed, an inelastic analysis, if the 
complications of real material properties can be accommodated). The designer will then have derived 
a set of forces compatible with his assumptions, and certainly in equilibrium with the applied loads. 
To describe this set of forces as the actual state of the structure is, however, to conclude too much 
from the analysis. 

If from no other cause, the passage of time will ensure inevitably the destruction of the 
designer’s assumptions; an abutment will give way slightly, or a pier will settle, and very small 
movements of this sort can alter markedly the equilibrium state of the structure, However, it does not 
seern reasonable to suppose that a settlement of a few millimetres in a span of a few metres, even if it 
has an apparently large effect on the position of the thrust line in the arch, can really have any 
measurable effect on the final strength of the arch. 
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Fig. 2.6 

 
It is precisely this common-sense view that is justified by the safe theorem. Small 

deformations of the arch, not apparent to the eye, can cause the thrust line to shift violently within the 
masonry (as will be illustrated below, Figs. 2.6(f) and 2.8(b)). The safe theorem states that once it has 
been shown that there is a single position of the thrust line lying within the masonry, then (to 
continue the anthropomorphic view) no matter how the thrust fine thrashes about in response to the 
changes in the external environment, it can never escape from the masonry. 

The matter is one of overall geometry. A defect of a few millimetres in a few metres is a 
defect of the order of one part in a thousand, that is, of the order of the thickness of a pencil line in a 
drawing of the arch. On the drawing board the perfect arch and the defective arch appear to be the 
same. A funicular polygon drawn for the perfect arch and found to be satisfactory will be equally 
satisfactory for the defective arch. 
 
THE GEOMETRICAL FACTOR OF SAFETY 
 
As has been remarked, words like 'satisfactory' and 'safe' may be clear, but they carry no numerical 
meaning. The statement that an arch is 'safe' if it can be shown to contain a proper funicular polygon 
does not indicate the extent of that safety. Some progress can be made towards the derivation of a 
numerical assessment by considering the ways in which an arch might fail. As a first step, some light 
will be shed by a study of the way in which an arch can adapt itself to small movements of its 
supports. 

A voussoir arch, made of rigid material and otherwise obeying the assumptions of material 
behaviour listed above, may be imagined to be fitted exactly between abutments. If the abutments 
then spread, the arch could accommodate itself to the increased span by forming three hinges as in 
Fig. 2.6(a), one at the crown in the extrados, and one at each abutment in the intrados. If the arch is a 
full semi-circle, then the hinges in the intrados will move away from the springings (Figs. 2.6(c) and 
2.7) but in either case the arches of Figs. 2.6(a) and (c) have become, effectively, three-pin arches. 
The funicular polygons for these arches can be drawn immediately, since the line of thrust must pass 
through the hinge points, and schematic fines (for an assumed symmetrical loading) are sketched in 
Figs 2.6(b) and (d). 

The pointed arch of fig. 2.6(e) will, in theory, form four hinges if the span increases. Now the 
three-pin arch is a well-known structural form; in the light of remarks below on conditions for 
formation of a collapse mechanism, care must be taken to avoid alarm at the sight of the four hinges 
of Fig. 2.6(e). Figure 2.6(f) shows the corresponding thrust line, and it is evident that if there is a 
slight asymmetry, either geometrically or in the loading, then one of the hinges in the extrados near 
the crown will not form. The two hinges are in effect a single hinge, split and displaced, but 
remaining of the same sign (that is, with their hinge lines both in the extrados); two neighbouring 
hinges of the same sign can always be regarded in this way as a split hinge, one component of which 
will be suppressed by any slight asymmetry. (There are other ways in which supernumerary hinges 
may be formed, but such hinges can again be detected by appealing to notions of symmetry.) 
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Fig. 2.7 Clare College 1 Bridge, Cambridge. Another view of the region shown in Fig. 1.5. The 

increase in span of the central arch has led to the formation of hinges between voussoirs. 
 

The pole of the force polygon which leads to the funicular polygon of say Fig. 2.6(f) lies as 
close as possible to the force polygon. That is, the value of the abutment thrust, Hmin, has its least 
possible value. There is, correspondingly, a maximum possible value Hmax which can be determined 
from a study of Fig. 2.8. The abutments of the arch are now too close, and three hinges have again 
been formed to accommodate the decreased span. 
 

 
Fig. 2.8 

 
Figures 2.6(f) and 2.8(b) represent pictorially the two extreme configurations of the funicular 

polygon. The movements which bring about the formation of the hinges are supposed to be small, but 
it is clear that these small movements can force the thrust line to adopt two widely different positions. 
However, for each limiting position of the thrust line the corresponding value of the abutment thrust 
can be calculated, and Hmax and Hmin represent upper and lower bounds on that value. Thus, despite 
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the uncertainty in practice as to the precise support conditions for the arch, it is at least possible to 
obtain numerical limits for at least one structural quantity; the safe theorem is not so blunt a tool as it 
might appear. 

Figure 2.9 (a) shows a semi-circular arch for which the funicular polygon is contained 
comfortably within the masonry, and which is, therefore, 'safe'. It is evident that a thinner arch ring 
could accommodate the same funicular polygon, that is, that a thinner arch could carry safely the 
same loads, but it is also clear that there is a limit to the amount that the arch ring could be reduced. 
This limit is reached in Fig. 2.9(b), and the arch is on the point of collapse by the formation, of a 
mechanism of four hinges; five hinges are shown in the absolutely symmetrical arch of Fig 2.9(c). 

 

 
Fig. 2.9 

 
The thinnest possible arch of Fig. 2.9(b) could be thought of as being contained within the 

actual arch of Fig. 2.9(a), and the amount by which the actual arch must be 'shrunk' to reach its 
thinnest possible state leads to the idea of a geometrical factor of safety. The concept of an arch 
within an arch was discussed in the first chapter; Fig. 1.19 shows the thrust line contained within the 
middle third of the arch ring. However, the middle-third arch arises from a study of the elastic 
behaviour of the material, whereas the geometrical factor of safety arises from a study of diagrams 
such as Fig. 2.9(a) and (b), in which the geometries of the funicular polygon and of the arch itself are 
compared. 

Thus a design rule based upon a geometrical factor of safety of 3 is exactly equivalent in 
practice to the middle-third rule, although the two rules have been devised in very different ways. 
However, the value of 3 is, from the point of view of the geometrical factor of safety, arbitrary. It 
may be that some other value, perhaps smaller than 3, would be appropriate for practical arch design. 
In this connection, it should be noted that the establishment of a reasonable value for the geometrical 
factor of safety is not in itself sufficient to give assurance of an adequate margin for the safety of a 
given arch. If live loads are reasonably high, then indeed, as will be seen, the geometrical factor may 
be all that is necessary for a practical design, but (to take a trivial example) if only dead loads act on 
the arch, then the centre line of the arch may have been designed to coincide exactly with the dead-
load line of thrust. In this case the geometrical factor of safety for the given loading is theoretically 
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infinite, whatever the thickness of the arch, although a thin rib, even of the correct shape, will be in a 
practical sense potentially unstable. 

Thus a second measure of safety might arise from some assessment of the resistance of the 
arch to the action of a disturbing load (say a superimposed point load). In practice the 'live-load' test 
could be combined with the geometrical test. A suitable value of point load could be selected, and the 
minimum thickness of arch determined to contain a thrust line for both the original loading and the 
test loading. It is this sort of approach that is examined in Chapter 4. 

Finally, a strength test could be devised. It has been assumed that stress levels are low, but 
this must be checked for any given design. A value of permitted stress will, in itself, lead at once to a 
minimum thickness of arch ring for given loading. For spans which are very large, or for arches of 
low rise which therefore have high thrusts, it may be that the strength of the material will govern the 
design. For bridges of usual dimensions, however, a limiting value of stress will usually not be the 
critical criterion, unless a very high factor of safety on stress is imposed. Instead, it is a mechanism of 
collapse, arising from suitably disposed hinges between the voussoirs, that is likely to form the basis 
of the assessment of safety. 
 
MECHANISMS OF COLLAPSE 
 
It has been noted that the three-pin arch is a satisfactory structural form; it is statically determinate, 
and the funicular polygon for given loading is unique. It is a fourth hinge which converts the 
statically-determinate three-pin arch into a mechanism. In Fig. 2.10(b) an idealized semi-circular arch 
is supposed to be acted upon by its own weight and by a single point load. As this point load is 
imagined to increase slowly in magnitude, the self-weight of the arch will have less and less effect on 
the shape of the funicular polygon; in the limit, the thrust line will consist of the two straight lines 
shown (cf. Fig. 1.14). For the particular dimensions sketched in Fig. 2.10(b) it is evident that a 
sufficiently large point load cannot be supported by two straight thrust lines lying wholly within the 
masonry; as the point load increases in magnitude, a stage will be reached when the arch collapses by 
the mechanism of four hinges sketched in Fig. 2.10(c). 
 

 
Fig. 2.10 

 
 The idealized arch has been drawn with very particular proportions; in Fig. 2.10(a) it will be seen 
that straight thrust lines can be drawn within the masonry to support a point load placed at the crown. 
The safe theorem would thus imply that the arch can carry a point load of any intensity at the crown 
(provided the strength of the material against crushing is not exceeded). The counterpart of this 
theorem is that there is no arrangement of hinges, for which one hinge, is at the crown, which will 
lead to a 'four-bar chain' mechanism of the type indicated in Fig. 2.10(c). 

The four-bar chain is the basic mechanism for collapse of an arch. There are in fact many 
structures for which no pattern of hinges can be devised to lead to a four-bar chain, and such 
structures are, within the framework of the assumptions about material behaviour, infinitely strong. 
The flat arch between rigid abutments of Fig. 2.11(a) is one such 'perfect' structure; there is no 
arrangement of hinges in the extrados and intrados of the arch which gives rise to a mechanism of 
collapse. The flat arch can carry any pattern of loading, and each of the other arches in Fig. 2.11 is a 
development of the flat arch. 

Use will be made of these ideas of mechanisms of collapse, on the one hand, and of safe 
positions of lines of thrust, on the other, to make an assessment of the strength of actual arches. 
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Before these ideas are developed, however, they may perhaps be illuminated by a brief review of the 
history of the analysis of arches. 
 

 
Fig. 2.11 

 

 
Fig. 2.12 Flat arches at the Colosseum, Rome, 1st Century AD. 
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3 
 
Some historical notes 
 
 
 
THE STATICS OF THRUST 
 
It was noted in Chapter 1 that the statics of the problem of the hanging chain were the same as those 
of the arch; the same techniques of force and funicular polygons can be used for each (cf. Figs 1.7 
and 1.8). As early as 1675 Robert Hooke had concerned himself with 'the true Mathematical and 
Mechanical form of all manner of Arches for Building', and had published the statement 'Ut pendet 
continuum flexile, sic stabit contiguum rigidum in.versum' - 'as hangs the flexible line, so but 
inverted will stand the rigid arch'. However, while Hooke had gained this insight into the behaviour 
of the arch, he had not in fact solved the statics of the problem, and his publication was in the form of 
an anagram, to establish priority should another scholar stumble on the same idea. 

Hooke had already demonstrated to the Royal Society some experiments on model arches, but 
it was not until after his death, in 1703, that the solution to the anagram was published. In the mean 
time, however, David Gregory had applied the newly-invented calculus to determine the shape of a 
hanging chain, and in 1697 he published the mathematical derivation of the catenary. He made 
mistakes in this work, which was intended to supply the proofs to otherwise unsupported statements 
of Huygens, Leibniz, and John Bernoulli, made in 1690-91. It is, however, Gregory’s commentary (in 
a translation by Ware) that is of present interest: 

In a vertical plane, but in an inverted situation, the chain will preserve its figure without 
falling, and therefore will constitute a very thin arch, or fornix; that is, infinitely small rigid and 
polished spheres disposed in an inverted arch of a catenaria will form an arch; no part of which 
will be thrust outwards or inwards by other parts, but, the lowest part remaining firm, it will 
support itself by means of its figure… And, on the contrary, none but the catenaria is the figure 
of a true legitimate arch, or fornix. And when an arch of any other figure is supported, it is 
because in its thickness some catenaria is included. Neither would it be sustained if it were 
very thin, and composed of slippery parts. 

 
The statement in italics (which were added by Ware) is, of course, nothing less than the safe 

or lower-bound theorem of plasticity, and the idea was used brilliantly by Poleni in 1748 in his 
analysis of the cracked dome of St Peter’s. Figure 3.1 reproduces Poleni’s Plate D, and gives 
evidence of his comprehensive grasp of the existing state of knowledge. At the bottom right is 
Hooke’s hanging chain, and above is the fornix of "small rigid and polished spheres" (this last based 
closely on an illustration in a book of 1717 by Stirling). 

The meridional cracks at St Peter’s had effectively divided the dome into portions 
approximating half spherical lunes (orange slices) of the type shown schematically in the right-hand 
sketch of Fig. XIII in Fig. 3.1. Poleni sliced the dome, hypothetically, into fifty such lunes, and he 
considered the stability of an arch formed by two individual opposing lunes; he stated explicitly that 
stability would be assured if "our chain can be found to lie entirely within the thickness of the arch", 
and further, that if each individual arch were stable, then so also would be the complete dome. These 
two statements are correct. 
 The actual shape of the chain was found experimentally by Poleni, by loading a flexible string 
with weights each of which was proportional to that of a segment of the tune. This experimental line 
of thrust did indeed lie within the thickness of the dorne, and Poleni concluded that the meridional 
cracking was not dangerous. Moreover, the analysis furnishes a value for the horizontal thrust of the 
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dome at its base, and Poleni agreed with a previous recommendation that additional ties should be 
provided at the base to contain this thrust. 
 

 
Fig. 3.1 

 
Almost exactly a hundred years later, in 1846, Barlow demonstrated models to the Institution 

of Civil Engineers illustrating the thrust of arches. One experiment was concerned again with the 
equivalence of the hanging chain and the inverted arch (Fig. 3.2); the semicircular arch shown has the 
minimum possible thickness, cf. Figs. 2.9(b) and (c). Further, the triangulation of forces at the left 
hand support of the chain in Fig. 3.2 was used by Barlow, as by Poleni before him, to calculate the 
horizontal component of the abutment thrust of the corresponding arch. 

In another experiment, six voussoirs were assembled as in Fig. 3.3, with the 'mortar' in each 
joint in the form of four small pieces of wood, each of which could be withdrawn by hand. Three out 
of the four pieces at each joint were then indeed removed, in different configurations, and alternative 
positions of the thrust line were thus made 'visible'; the three lines shown in Fig. 3.3 may be 
compared with those of Figs 2.6(b), 2.8(b) and 2.9(a). 

Thus Barlow was well aware that there are an infinite number of equilibrium states for a given 
masonry arch, and that the arch is, in fact, statically indeterminate. By 1879 notions of statical 
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indeterminacy were more fully developed, and Castigliano in his book applied the theorems which 
bear his name to the solution of the masonry arch. He knew that tension could not be transmitted 
between voussoirs assembled dry or with weak mortar. If, however, a section of the arch cracked (as 
in Fig. 1. 18(e)), then the flexural properties at that section would be affected, and Castigliano 
demonstrated a trial-and-error method of locating the position of the thrust line. His solution, 
therefore, was for an arch made of elastic/no tension material. 
 

 
Fig. 3.2 (Barlow 1846). 

 

 
Fig. 3.3 (Barlow 1846). 

 
Yvon Villarceau in 1854 was not bedevilled by such clear notions of statical indeterminacy, and he 
made no attempt to find 'the' solution to the problem of the position of the line of thrust. Instead, he 
developed a 'safe' design method by requiring the centre line of the arch to coincide with one of the 
possible thrust lines for the given loading. This inverse design method requires the numerical solution 
of the equations, and the results are given in the form of tables which can be used immediately in 
standard calculations by the bridge designer. Yvon Villarceau’s work was elaborate, and his memoir 
to the French Academy was long, but the results were very accurate. 

Inglis gives a simple closed-form example of the sort of inverse design made by Yvon 
Villarceau. Figure 3.4 shows a voussoir arch supporting a level roadway; the fill is supposed to be of 



 33 

uniform density and to impose a purely vertical load on the arch ring. If the origin of coordinates is 
taken in the road surface on the centre line of the arch, and the equation of the arch centre line is y  = 
y (x), then the intensity of vertical load per unit horizontal length is ky. The problem posed by Inglis 
is the determination of the arch centre line so that it coincides with the thrust line resulting from this 
dead loading; that is, each element of the arch ring will be subjected to the forces of Fig. 3.5. From 
this figure, it will be seen that 
 

, (3.1) 
or 
 , (3.2) 
 
where H is the value of the horizontal component of the abutment thrust, and that 
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Thus if the depth of the fill at the crown is a, then 
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where a� = k/H. 
 
Finally, then, if the rise of the arch is h, 

 

, (3.7) 
 
and the required equation of the arch centre line, that is, (3.6), becomes 
 

, (3.8) 
 
Equation (3.8) represents a family of curves with parameter h, and corresponds to the infinite number 
of possible positions for the thrust line. A practical design could, for example, specify the span l and 
the total height (a+h), but the value of h itself could be chosen by the designer. 

As an example of the application of the 'Inglis equation' (3.8), it may be compared with the 
profile of an actual arch. Yvon Villarceau made redesigns of several existing bridges, including that 
of the Pont d’Iéna (Lamandé 1809). This five-arch bridge is of about 3 m rise in each 25 m span, and 
the ratio of h/a is about 2.0. The exact profile calculated by Yvon Villarceau differs from the Inglis 
profile of equation (3.8) by a maximum of about 20 mm. It is not possible to build a masonry arch of 
25 m span whose profile can be guaranteed to an accuracy of 20 mm after decentering and 
subsequent settlement. 
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Fig. 3.4 

 

 
Fig. 3.5 

 
MECHANISMS OF COLLAPSE 
 
The notes above were all of work concerned in the main with the construction of lines of thrust; that 
is, it investigated the statics of the problem. However, the efficient methods of Yvon Villarceau, or of 
Inglis, while establishing the correct shape for the arch ring, give no information as to the thickness 
of that arch ring in order to ensure, in a practical sense, the stability of the arch. Side by side with the 
work on thrust other writers (and sometimes the same writer) were also demonstrating the ways in 
which a masonry arch might collapse. 

Thus in his first attempt at the arch problem, in 1695, la Hire was concerned only with statics. 
The practical problem to be solved was the determination of the value of the arch thrust, so that, in 
turn, the abutments of the arch could be designed to stand firm against overturning. The difficulty in 
the analysis lay in the assumptions to be made about the behaviour of the voussoirs of the arch. In his 
1695 analysis, La Hire took it that an individual voussoir was free to slide against its neighbour. He 
solved the problem by constructing a force polygon, involving the weights of the voussoirs, and the 
corresponding funicular polygon for the arch. For an arch of given shape with smooth voussoirs the 
funicular polygon is fixed, so that, working backwards, the force polygon can be deduced and finally 
the weights of the voussoirs found. 

Now if the springing lines of the arch are horizontal it follows that the weights of the 
springing voussoirs must be infinite; a finite arch of this type with smooth voussoirs cannot stand. La 
Hire reached this conclusion, the result of an unrealistic assumption about the behaviour of the 
material, and he noted that in practice friction between the voussoirs would confer the necessary 
stability. Thus the arch problem was not much advanced in this work, although the important tool of 
the funicular polygon was developed. 

La Hire returned to the problem in 1712, and here, apparently for the first time, consideration 
was given to the way in which a real arch might fail. He remarked that if the piers of an arch were too 
weak to carry the thrust, then the arch would break at a section somewhere between the springing and 
the keystone. The joint LM in Fig. 3.6 is taken to be critical, and the block LMF is then regarded as a 
single voussoir, as is the block LMI resting on the pier IBHS. Thus in Fig. 3.7 the thrust P can be 
found by considering the equilibrium of the top block (La Hire correctly directed this thrust 
tangentially to the intrados at L). Then, by taking moments about H for the lower portion of the arch 
and the pier, an expression to check the stability of the whole structure can be obtained. 

La Hire gave no rule for finding the critical point L. The intrados hinges are analogous to 
those shown schematically in Fig. 2.6(c), but the thrust at the crown in Fig. 3.7 does not act at the 
extrados, and the third hinge is therefore not formed. However, La Hire’s work is evidently a major 
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contribution; moreover, his estimate of the abutment thrust is greater than the minimum necessary for 
stability, so that his procedure is, as it happens, 'safe'. 
 

 
Fig. 3.6 (La Hire 1712). 

 

 
Fig. 3.7 (La Hire 1712). 

 
The first civil engineering handbook, Bélidor’s Science des ingénieurs of 1729, has a section 

on arches which is based firmly on the work of La Hire. However, there are some departures; the 
weakest section of the arch is taken to be always 45°, and the thrust (of value √2W where W is the 
weight of the 'voussoir' LMF) acts not at the intrados L, but at the midpoint of LM. This last variation 
increases slightly the thickness of the piers for a given thrust √2W, and is therefore once again 'safe'. 
Bélidor did not in fact advance arch theory, but he established a set of practical design rules on the 
basis of existing work. 

This was the background to Couplet’s two remarkable memoirs on arch thrust of 1729 and 
1730. The first of these papers really repeated much of La Hire’s early work on frictionless arches, 
and consists of little more than an examination of lines of thrust and the calculation of corresponding 
forces. Couplet knew that all this was of little practical value, but he did give one interesting 
calculation of the forces on centering. This topic is of obvious constructional importance, but little 
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had been written, although Pitot in 1726 gave details of timber centers and attempted a theoretical 
analysis. 

The problem posed by Couplet is that of a semicircular arch of uniform frictionless voussoirs 
resting on a smooth center; the final keystone (of very small width) has not been placed. In this state, 
Couplet determined the voussoir joint, say MV in Fig. 3.8, above which the voussoirs will require 
support from the centering, and below which they will be self-supporting. He deduced that the 
dividing joint lay at 30° from the abutment, but he failed to notice that the bottom group of voussoirs 
was not in equilibrium, and that his analysis demanded the development of tensile forces between the 
voussoirs and the centering. 

It is the second memoir of 1730 which is the major contribution to arch theory. In his 
introduction Couplet was precise in the statement of two key assumptions about the way the material 
behaves. He noted that friction would in practice lock the voussoirs together against sliding, while 
offering no resistance to separation between voussoirs. He makes no mention of the strength of the 
stone of which the voussoirs are made, and by implication he assumed that ambient stresses are low 
so that crushing strength is of little importance. 

Thus Couplet made in effect the three postulates necessary for arch theory to be embraced 
within the theory of plasticity: that masonry has no tensile strength, has infinite compressive strength, 
and that sliding between voussoirs does not occur. Further, his work demonstrates the two ways of 
approaching any structural problem, the first being through equilibrium (statics) in which thrust lines 
are considered, and the second through deformation (mechanisms) in which patterns of hinges are 
constructed. 

Couplet’s proof of his first theorem in his second paper contains exactly, these dual aspects of 
structural behaviour. The theorem states that an arch will not collapse if the chord of half the extrados 
does not cut the intrados, but lies within the thickness of the arch. Couplet has in mind an arch of 
negligible self-weight subjected to a single point load at the crown A (Fig. 3.9 (cf. Fig. 2.10(a)). 
 

 
Fig. 3.8 (Couplet 1729). 
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Fig. 3.9 (Couplet 1730). 

 
Whatever the magnitude of the load, it can communicate directly with the abutments B and C, 
following the straight thrust lines AFB and AGC. Further, said Couplet, for the arch to collapse the 
angle BAC must open, and this can happen only by a spread of the abutments, which is ruled out by 
hypothesis; there is in fact no arrangement of hinges in the extrados and intrados which is both 
compatible with a thrust line for the load and which gives rise to a mechanism of collapse. 

Couplet then remarked on the behaviour of the thinner arch BAC; ODEP. If the crown A were 
loaded sufficiently, then the angle DAE could now open and the angles ADB and AEC could close, it 
being supposed that the portions BMDO and CNEP have insufficient mass to resist overturning. 
However, the mode of collapse could be inhibited if the haunches were loaded. Moreover, Couplet 
noted that when such superimposed loading is omitted, then in the possible consequent failure the 
weakest points of the arch are often found to be half way between the springing and the crown. 

With these preliminaries completed, Couplet tackled his first problem, namely to find the least 
thickness to be given to a semi-circular arch, carrying its own weight only. The arch, said Couplet, 
would collapse by breaking into four pieces, attached to each other by hinges (Fig. 3.10, cf. Fig. 
2.9(c)). The hinges T and K at the haunches are placed at 45° from the springings (that is, 'half way') 
and, by considering the equilibrium of the arch in this state, a single equation can be found relating 
the thickness of the arch to its (mean) radius. Couplet solved this cubic equation numerically to 
obtain the required ratio of thickness to radius t/R as 0.101. 
 

 
Fig. 3.10 (Couplet 1730). 

 
Couplet’s statics are evident in Fig. 3.10. For the equilibrium of the piece AK of the arch, the 

horizontal thrust at A combined with the weight acting through H leads to a thrust at K in the line 
GK. Now GK is not tangential to the intrados at K; Couplet missed this point, but the work is 
otherwise correct. The intrados hinges do not form at 45° from the springing but at about 31°; 
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however, the analysis is not very sensitive to their exact position, and the correct value of t/R is 
increased only to 0.106. 

In his second problem Couplet repeated the above analysis for a circular arch embracing 120° 
rather than 180°. The third problem is concerned with the determination of the value of the arch 
thrust, and Couplet’s solution is essentially a reworking of La Hire’s analysis. He abandoned his 
'collapse analysis', and instead he worked from a thrust line; specifically, he worked from the centre 
line SX of the arch, Fig. 3.11. The thrust at the crown acts horizontally at S, and the weight of half 
the arch in the line LR; a simple triangulation of forces then gives the magnitude of the abutment 
thrust, acting in the line LX. This calculation of abutment thrust is necessary for the solution of 
Couplet’s fourth and final problem, namely the determination of the dimensions of the piers so that 
the whole structure is stable; this is the problem to which the whole of the work is directed. 
 

 
Fig. 3.11 (Couplet 1730). 

 
This contribution of Couplet is outstanding. He had clear ideas of lines of thrust and of 

mechanisms of collapse caused by the formation of hinges, he stated explicitly his simplifying 
assumptions, and he used the ideas to obtain an essentially correct and complete solution to the 
problem of arch design. His work had an immediate impact, and found its way into standard texts (for 
example, that of Frézier in 1737-39). 

In 1732 Danyzy obtained experimental confirmation of the correctness of Couplet’s approach. 
The work was done in Montpellier, and published obscurely (and not until 1778). However, the 
experiments were noted, and Fig. 3.12 reproduces a plate from Frézier based on one of Danyzy’s 
illustrations showing collapse of arches made from small plaster voussoirs. (Note Frézier’s Fig. 241, 
which is half of Couplet’s arch sketched in Fig. 3.9.). All the arches shown are on the point of 
collapse, the piers having minimum dimensions. Figure 235, for example, reproduces exactly (apart 
from the double hinge at the keystone) the collapse mechanism predicted by Couplet (Fig. 3.10). The 
flat arch of Fig. 240 (cf. Figs. 2.11) is, within the framework of the assumptions, infinitely strong; it 
can collapse only if the abutments give way. 

Despite this publicity given to the work of Couplet, it was slowly forgotten; Poleni knew of it 
in 1748, but Coulomb betrays no knowledge of it in his famous memoir of 1773 on 'some statical 
problems'. However, Coulomb lived as a young man in Montpellier, and knew Danyzy there, so that 
it seems certain that he would have known of the collapse of arches by the formation of hinges. In 
fact if friction is large enough between voussoirs to prevent sliding (and this is a clear statement 
made by Coulomb) then he concludes that hinging is the only possible mode of failure. 

In Fig. 3.13, from Coulomb, half an arch is maintained in equilibrium by a horizontal thrust H 
through the point f at the crown. If this thrust falls to a small enough value then the whole of the 
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portion GaMm of the arch might hinge about the point M in the intrados; for the arch in this state, it 
is a matter of simple statics to determine the corresponding value of the thrust as 

,  (3.9) 
 
where f is the weight of GaMm acting in the line g'g. Similarly, if the thrust is too high the portion 
GaMm could hinge about the point m in the extrados, and again the value of the thrust is calculable 
as 

  (3.10) 
 

Thus Coulomb established limits between which the value of the horizontal thrust must lie if 
stability of the arch is to be assured. However, the critical section Mm has not yet been determined. 
Coulomb showed that, if various cross-sections of failure are considered (together with different 
positions of the point f at the crown through which the thrust acts), then the maximum value of H 
must be sought from (3.9), and the minimum from (3.10). All these ideas are correct. 
 

 
Fig. 3.12 (Frézier 1737-39). 
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Fig. 3.13 (Coulomb 1773). 

 
Coulomb’s work, combining as it does clear statements of assumptions and material 

properties with notions of thrust lines on the one hand, and hinge mechanisms on the other, gives an 
extensive theoretical basis for arch analysis and design. However, there is no mention of the work in 
a volume of 1810 intended for the use of engineers in the Ponts et Chaussées; a paper by Boistard, in 
the volume edited by Lesage, mentions only the work of Couplet and Prony. (By contrast, Coulomb’s 
work on soil mechanics – the thrust against a retaining wall – published in the same paper of 1773, 
was immediately taken up; Prony, for example, in 1802, elaborated Coulomb’s theory of soil into a 
small book.) 

Coulomb remarked that a method of trial and error to find the critical section will be very 
accurate, since the maximum or minimum is 'flat'; this insensitivity was noted above in the work of 
Couplet, and, by implication, Coulomb was able to correct the trivial error of placing the intrados 
hinge at the fixed location of 45°. 

Thus Lamé and Clapeyron, who later achieved distinction in more than one field, were, in 
1823, bright ignorant young army officers, who were called on to assess the stability of the dome of 
the cathedral of St Isaac in St Petersburg. In the course of this assessment they virtually reinvented 
the whole of Coulomb’s theory; further, they recreated Poleni’s slicing technique, and divided the 
dome into lunes for the purpose of their analysis. The theory of arches was, in fact, known to 
professors, if not to young students, and in 1833 Navier published his Leçons for the Ponts et 
Chaussées, so that the theory was then available also in the schools. 

In England, Barlow’s paper of 1846 to the Civils has been mentioned; Moseley developed his 
own (slightly cloudy) theory in 1843, by his own admission in ignorance of Coulomb’s work. 
Information on arches was in fact available throughout the nineteenth century, and lines of thrust and 
the 'middle-third rule' were part of the designer’s stock-in-trade. Fuller gave his construction for the 
thrust line in 1875, but the masonry arch was already obsolescent by the mid-nineteenth century 
(Séjourné published in six volumes early in the twentieth century a definitive catalogue of large span 
masonry bridges throughout the world). Rennie’s London Bridge, now taken down, was completed in 
1831, and Thomas Harrison’s bridge at Chester, at 200 ft the largest masonry span in England, was 
built a year later. These were among the last of the masonry bridges. Iron Bridge at Coalbrookdale 
had been built in 1779; Telford had already projected a cast-iron span of 600 ft for the new London 
Bridge. 
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Fleeming Jenkin knew all about voussoir arches, but his long article on bridges for the ninth 
(1876) edition of the Encyclopedia Britannica devotes, rightly, most of the space to wrought iron and 
steel, and little to masonry. Indeed there seems to have been little further work on the masonry arch, 
and perhaps no need for further work, until well into the twentieth century; there was a renewed 
interest just before the second World War, due to the activity of Pippard. He made careful tests of 
model arches with steel voussoirs, and demonstrated that the slightest imperfection of fit (for 
example, at the abutments) converted an apparently redundant structure into a statically-determinate 
one. As will be seen in the next chapter, this led to some simplification of analysis, but Pippard’s 
approach was still essentially that of an elastician, and he interpreted his results with respect to 
principles of minimum elastic energy. Coulomb, a century and a half earlier, had foreshadowed the 
limit principles and the techniques of plastic theory, but the full development of that theory came 
only after the second World War. 
 
PRACTICE AND EXPERIMENT 
 
Boistard, in his essay included in Lesage’s collection of 1810 for the Ponts et Chaussdes, had covered 
much the same experimental grounds as Pippard, although the details of the tests were different. 
Moreover, they were wider in scope; not only did Boistard wish to establish modes of collapse under 
various loading conditions, he wished also to establish minimum abutment requirements at collapse 
(that is, he was interested in the value of the abutment thrust), and he wished to investigate the forces 
on the centering during construction. 

Danyzy’s tests of 1732 on arches with plaster voussoirs had not been concerned with this last 
constructional problem, although it was noted above that Couplet had made a theoretical contribution 
slightly earlier. Boistard worked on a larger scale than Danyzy; his voussoirs were cut from brick and 
polished, and the arches had spans of 8 ft. However, Boistard was content merely to record his 
observations, and he made no calculations. 

The first model tests on arches seem to have been reported by Gautier in 1717; he used 
wooden voussoirs. Gautier gives numerical rules of proportion for bridges, relating thickness of 
abutments and thickness of internal piers (for multi-span bridges) to the span of the arch. He stated 
clearly five problems whose solution was needed: 
(1) the thickness of abutment piers for all kinds of bridges; 
(2) the dimensions of internal piers as a proportion of the span of the arches; 
(3) the thickness of the voussoirs; between extrados and intrados in the neighbourhood of the 
keystone; 
(4) the shape of arches; 
(5) the dimensions of retaining walls to hold back soil. 
(It was this fifth problem that Coulomb tackled, as well as the problem of arches, in his 1773 paper.) 

Gautier’s first problem was the fundamental problem of bridge design; what all investigators 
were trying to do, from La Hire onwards, was to solve the problem by the use of mechanics rather 
than empirically. Empirical rules did indeed exist for the design of abutments; the seventeenth 
century knew of 'Blondel’s rule', which is described below (Bé1idor was concerned in pointing out 
the shortcomings of Blondel’s rule), and similar rules can be found in the sixteenth century, for 
example in the writings of the Spanish architect Rodrigo Gil De Hontañon. 

François Derand gave a clear account of Blondel’s rule, and Fig. 3.14 is based upon one of 
Derand’s plates in the edition of 1743. The intrados of the arch is divided into three equal chords AB, 
BC and CD in Fig. 3.14(a); CDF is a straight line with CD equal to DF, and the point F locates the 
outer edge of the supporting-pier. For the semi-circular arch the width of this abutment pier is one 
quarter of the span (Rodrigo arrives at this same proportion); Figs. 3.14(b) and (c) show the 
construction for arches of different shapes. Bélidor pointed out that the rule does not involve the 
thickness of the arch, nor the height of the piers. The second criticism, at least, is perhaps not of 
importance; Moseley demonstrated later that a finite width could be assigned to the piers to carry a 
given thrust, independently of their height. Moreover, the trend shown in Fig. 3.14 is at least 
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intuitively correct; low-rise arches will give rise to large thrusts, and must be provided with heavier 
abutments. 
 

 
Fig. 3.14 (Derived from Derand 1743). 

 
Blondel’s rule says nothing of internal piers. The internal piers of medieval bridges had 

thicknesses large compared with the span (for example, old London Bridge, or the still existing 
bridge at Bideford, or the Pont d’Avignon); typically the ratio thickness/span might lie between 1/4 
and 1/6. Such large obstructions to the flow of a river lead to a vicious circle of damage and repair: 
the increased flow through the restricted arches causes scour round the footings of the piers, and the 
piers must be enlarged by starlings to make good the damage; the flow is thereby further increased 
and the piers must be further enlarged. Gautier’s own rule was 4/15 of the span for the abutment 
piers, but 1/5 for the internal piers. 

There is evident in these ratios a tentative move towards the advance first taken fully by 
Perronet, in which the internal piers are drastically reduced in thickness. For a multi-span bridge with 
more or less equal spans, the internal piers carry little more than vertical forces, the horizontal thrusts 
from adjacent spans being roughly self-equilibrating. In his first major bridge over the Seine, the Pont 
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de Neuilly, 1768-74, Perronet reduced the internal piers to 1/9 of the span. The price paid during 
construction for this lightening of the masonry is that centers for all spans (five in number at Neuilly) 
must be erected simultaneously, and the centers cannot be struck until all arch rings, together with 
sufficient backing, have been constructed. 

The bridge was entirely successful, not least in the operation of decentering, in which all five 
arches were released simultaneously in the presence of the King and Court. Perronet had a firm 
appreciation of the properties of his centering. He had calculated that each masonry span would sink 
15 inches when released; in reality, the deflection was 13 inches immediately, followed by 10 1/2 
inches, to make a total of nearly 2 ft in each span of 128 ft. 

Perronet had been appointed in 1747 as the first director of the newly founded Ecole des 
Ponts et Chaussées, and his influence as a designer and teacher was very great. It was his pupil, 
Gauthey, who assembled and digested all the theoretical and experimental work on bridges known to 
the Ponts et Chaussées by the beginning of the nineteenth century. The three-volume Treatise (edited 
in 1809 by Navier) is a history of bridge-building, a survey of existing bridges, an architectural 
handbook, and, above all, a manual on the design and construction of masonry arches, together with 
their specification and costing. 

The engineering problem of the masonry arch had been effectively solved, and further work 
tended to be written for the 'scientific' rather than the 'engineering' world. Thus Yvon Villarceau’s 
paper, published in 1854, was presented to the Académie des Sciences in 1845; his inverse design 
method, presented in the form of tables, coupled with Gauthey’s manual, could be used today with 
confidence and economy. 
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4 
 
The strength of arches 
 
 
 
There are many brick and masonry bridges in use, carrying road or rail traffic. Up until World War II 
highway loading was relatively light; since that time, vehicles have increased considerably in weight, 
and it can no longer be assumed that a medieval bridge will be capable of carrying every vehicle now 
on the roads. Instead, those responsible for the maintenance of such bridges are concerned to 
establish their safety and, in particular, to try to estimate safe values of live load for a given bridge. 
The problem was tackled in a systematic way by the Military Engineering Experimental 
Establishment (MEXE) just after the War, in an attempt to establish a military load classification 
system; this work was then developed, in 1967 (and revised in 1973), by the Ministry of Transport, 
and they issued a technical memorandum which is described briefly below. 

These studies of masonry arches were based on Pippard’s pre-war papers, and he himself 
developed his analysis and reported his findings in Civil engineer in war, in 1948. 
 
PIPPARD’S 'ELASTIC' METHOD 
 

Pippard started from his observation that a very slight spread of the abutments of a voussoir 
arch would normally produce 'pins' or hinges at the abutments. However, he ignored the fact that a 
third hinge will also form, converting the arch into a statically-determinate three-pin structure (cf. 
Fig. 2.6(a)); instead, he analysed a two-pin arch. 

The bridge to be treated is shown in Fig. 4.1; the surface of the fill is horizontal and, for the 
purpose of analysis, the arch ring is replaced by the two-pinned centre-line rib of Fig. 4.2. This is the 
first in a series of simplifications made by Pippard in order to derive reasonable values for the 
structural quantities; his assumptions are not always explicit, but the analysis summarised by him in 
1948 may be reconstructed from his book of 1943. 

Thus Pippard, like Castigliano before him, was concerned with an 'elastic' solution to the arch 
problem. Unlike Castigliano, however, Pippard was content to analyse a hypothetical rib coinciding 
with the centre line of the arch, and he did not follow in detail the cracking of the masonry at the 
abutments. In fact, Castigliano’s solutions for various alternative assumptions as to the behaviour of 
the mortar all gave values of abutment thrust within 4% of a mean value. This apparent insensitivity 
is commented upon below; it may be noted here that the assumption of simple pins at the abutments 
will not have any marked effect on the value of the abutment thrust. 
 

 
Fig. 4.1 
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Fig. 4.2 

 
If, therefore, a point load W is placed at the crown of the arch rib, (Fig. 4.2) – and this was the 

case considered by Pippard – then the bending moment Mx, at any section can be written in terms of 
the unknown, abutment thrust H. The shape of the arch rib must of course be known, and Pippard 
took the arch to be parabolic; that is, he confined his analysis to the case for which rq/rc = 3/4 in Fig. 
4.1. The strain energy U for the arch can now be formulated in the usual way as 
 

, (4.1) 
 
where ds is an element of arc length of the arch. Thus the value of H is given by the solution of the 
equation 
 

, (4.2) 
 

To simplify the integral, Pippard supposed that the section of the arch rib varied in such a way 
that 

 

, (4.3) 
 
so that (4.2) becomes 
 

, (4.4) 
 

Equation (4.3) implies that the section of the arch rib increases from the crown towards the 
abutments. 

The solution of (4.4) for the loading case of Fig. 4.2 gives a value HL of the live-load 
abutment thrust: 
 

, (4.5) 
 
Correspondingly, the value of the bending moment at the crown of the arch is 
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where the negative sign indicates that the thrust line lies above the arch rib (sagging bending 
moment); the solution is illustrated in Fig. 4.3. 

Equations (4.5) and (4.6) are the essential results which, when combined with corresponding 
expressions resulting from the self-weight of the arch ((4.7) and (4.8) below), were used by Pippard 
to estimate the safe value of live load for an arch of any shape. It should be noted, however, that these 
results have been obtained, using an elastic method of analysis, for a two-pin arch, for a rib of 
parabolic shape, and for a cross-section which varies in accordance with (4.3). In point of fact none 
of these assumptions will have much effect on the value of the abutment thrust HL. However, since 
the bending moment at the crown of the arch is determined by the difference in ordinates between the 
line of thrust and the arch centre line (that is, by the dimension 7a/25 in Fig. 4.3), a relatively small 
change in the value, of HL can have a much larger effect on the value of bending moment. 
 

 
Fig. 4.3 

 
Further, Pippard confined his analysis to that for a single point load at mid-span. The 'worst' 

location for a point load is investigated further below. Pippard was aware that in theory an arch rib is 
weakest under the action of a point load at about quarter-span rather than at the crown. However, he 
argued – reasonably – for the use of the result for the central load on the grounds of the distribution 
of the load from the road surface through the fill to the arch proper. If a conventional 90° wedge 
angle is taken for the dispersion of the load, then the effective width of the arch when the load acts at 
the crown is 2h. A greater width of arch will be available to carry the point load at quarter span, since 
the load will be dispersed through a greater thickness of fill. 

The numerical values resulting from (4.5) and (4.6) must be superimposed on the 
corresponding quantities arising from the dead weight of the arch and fill. Pippard took it that the 
appropriate width of bridge is 2h; that is, he analysed the 'rib' contained within the bridge that is 
concerned, at least at the crown, with carrying the live load. He assumed further that the fill has no 
structural strength, so that it imposes purely vertical loads on the arch (this was the assumption made 
by Inglis, and noted in Chapter 3, Fig. 3.5), and that the fill has the same unit weight s as the arch 
ring. A further strain-energy analysis then gives values of the dead-load thrust and bending moment 
at the crown as 
 

, (4.7) 
 

, (4.8) 
 

Thus the combined effects of the point live load at the crown and the dead weight of the arch 
(of width 2h) are a thrust and a central bending moment with values 
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, (4.9) 
 

, (4.10) 
 

The remarks about the sensitivity of the value of bending moment to the assumptions that 
have been made in deriving that value apply even more to the dead-load analysis. The dead-load line 
of thrust is a smooth symmetrical curve lying close to the parabolic arch centre line (as it must to 
minimize the strain energy); for typical values of h, d and a, (4.7) and (4.8) show that the line of 
thrust lies below the arch centre line at the crown by only a few per cent of the rise a. Thus for a 
typical small bridge with h=d=1/4a, say, (4.7) and (4.8) give MD/HD=a /29. 

Moreover, the two sensitive quantities are combined in (4.10), and it is this, value of bending 
moment that was used by Pippard to derive his rules of assessment. As larger and larger values of W 
are imposed at the crown of the bridge, so the resultant line of thrust departs more and more from the 
centre line of the arch; the first term in (4.10) remains constant, while the second increases. The 
implication is that tensile stresses will eventually develop. 

Thus a first criterion applied by Pippard is derived from the middle-third rule. Or rather, 
Pippard argued that a less restrictive criterion might be based on a middle-half rule, in which case the 
limiting value of W would be given by the solution of 

 

 (4.11) 
 
which leads to 

 (4.12) 
 
However, Pippard also investigated the case where the compressive stress in the masonry 

reached a maximum permitted value, and thus he considered a second condition. Since the arch ring 
has depth d and effective width 2h, the limiting stress f will be reached when 

 

 (4.13) 
 
and substitution of (4.9) and (4.10) gives 

 

 (4.14) 
 
Pippard studied expressions (4.12) and (4.14), which give limiting values of W on the alternative 
assumptions of zero tensile stress (in fact relaxed by the 'middle-half rule to allow some unspecified 
tensile stress) and a limited compressive stress. He took a range of numerical examples, and he had 
available the results of full-scale tests made by the Building Research Station. As a result, he 
considered it safe to discard (4.12), and to use the less restrictive (4.14). That is, the value of W2 (for 
the values of the constants chosen by Pippard) is generally larger than that of W1, and Pippard 
allowed even his middle-half rule to be violated. 
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For small arches the cover h is often less than 2 ft, so that the effective corresponding arch rib 
will be less than 4 ft wide; two such ribs can be thought of as existing independently within the barrel 
of an actual arch. Thus the safe axle load WA for a vehicle of normal track width may be taken as 
 

 , (4.15) 
 
From (4.14) and (4.15) Pippard constructed tables for a single standard arch of parabolic profile with 
a span/rise ratio l/a = 4. The unit weight of the arch and fill material was taken as s = 0.0625 ton/ft3, 
and the limiting compressive stress as f =13 ton/ft2. 

From these tables could be read the value of WA for various values of span l, ring depth d and 
crown cover h. The significance of these tables is discussed below in the light of further 
developments made by MEXE. 
 
THE MEXE/MOT METHOD OF ASSESSMENT 
 
The Military Engineering Experimental Establishment found that (4.14) could be fitted quite well, for 
given values of s and f, by a nomograph involving only the arch span l and the total depth (h+d) at 
the crown, and this idea was incorporated in the Ministry of Transport memorandum of 1967. Thus 
for an arch of given dimensions the provisional axle loading WA can be read off immediately, as 
shown schematically in Fig. 4.4. The loading is designated provisional because the value of WA is 
operated on by a series of modifying factors. In the first place, it was seen that (4.14), and the 
corresponding nomograph, were derived for the standard case a = 1/41; the first modifying factor 
adjusts the value of WA to allow for span/rise ratios different from the value 4. When 1/a > 4 (that is 
for flat arches) the factor is progressively reduced from unity (to about 0.6, for example, for l/a = 8). 
 

 
Fig. 4.4 

 
Second, an adjustment is made to allow for a profile other than the standard parabolic, for 

which rq/rc = 3/4, where rq is the rise at quarter span, Fig. 4.1; for rq/rc > 3/4 the factor is less than unity. 
Third, the product of two further factors expresses an assessment of the quality of the material 

in the arch ring and in the fill; the resulting material factor can be greater or smaller than unity, and 
typically might lie between 0.6 and 1.2. 

Fourth, a joint factor lying between 1/2 and 1 is assessed from the width, depth and condition 
of the mortar between the voussoirs. 

These four factors are applied to the provisional value of the axle loading, and can have a 
marked effect; four factors each of value 0.7 will reduce the permitted load to one quarter of the 
provisional value. Moreover, there is a fifth and final factor to be applied: the condition factor. The 
engineer is invited to specify a factor between zero and unity depending on his overall impression of 

WA = 2W2
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the state of the bridge (a factor of 0.4 or less implies that the bridge should be rehabilitated 
immediately). 

The essential features of this MEXE/MOT approach to the assessment of masonry arches are 
that 
(a) there is considerable emphasis on the geometrical properties of the bridge; in the nomograph, 

the arch span and the total crown thickness (h+d) serve to define a provisional value of the axle 
loading, and the actual shape of the arch is later introduced in the form of modifying factors. 
One curiosity is that the thickness d of the arch, ring does not enter directly into the 
calculations, although it does have a small effect on the value of the material factor; 

(b) the arch is treated, in a late nineteenth-century way, as an elastic redundant structure. A long 
series of simplifying assumptions is made, but the state of the arch under given loading is 
evaluated using established elastic techniques; 

(c) the final criterion for the load-carrying capacity of the arch is based upon the attainment of a 
limiting value of compressive stress. 

 
The whole assessment depends, of course, on the values of the thrust and bending moment that have 
been evaluated at the crown of the arch. As has been noted, the value of the thrust will not be much 
affected by the various assumptions made in the elastic analysis, but the value of the bending moment 
is sensitive to these assumptions. On the face of it, therefore, this way of assessing the provisional 
value of axle load must be regarded with some suspicion. 

However, the criterion of a limiting compressive stress does impose, as it turns out in practice, 
some uniformity in the assessment. The use of the middle-third rule as a limiting criterion would 
imply that, at the crown of the arch, the largest compressive stress would have been contributed to by 
50% from the thrust and 50% from the bending moment; the middle-half rule makes these 
proportions 40/60. Pippard's examination of the expression for W2, (4.14), in which he found that the 
middle-half rule was slightly violated for a wide range of practical cases, implies that the proportions 
are about 30/70 or perhaps 25/75. Thus, for this usual range of bridges, the horizontal thrust is 
contributing a roughly constant proportion, of between say 25 and 30%, of the maximum 
compressive stress at the crown; effectively, the design of the arch ring (that is, the assessment of 
carrying capacity) is based empirically almost entirely on the value of the thrust. 

Thus, despite the apparently arbitrary nature of some of the steps, the Pippard analysis which 
led to the MEXE/MOT method is perhaps not so capricious as it might appear. If it were used as a 
method for design, then the dimensions of the arch ring would be fixed from the value of the thrust in 
the arch, so that stresses are kept, nominally, within permitted values, and this despite the fact that, 
paradoxically, the thickness of the arch ring is not a major parameter in the method. As with most 
sets of apparently empirical design rules, it is implicit that the structure under consideration is of a 
usual type. Certainly, it seems implicit that an arch of reasonable shape for a bridge with reasonable 
cover at the crown will be able to carry a reasonable range of live loading (the actual shape does have 
some effect on the design, by way of the various factors introduced in the analysis). 

Further, the MEXE/MOT method finds a place for engineering judgement as to the nature of 
the materials and the state of the structure. However the method is, in the last analysis, an amalgam 
of practical experience backed by a theory of elastic behaviour which does not really apply to the 
masonry structure, and which is in fact largely discarded in the construction of a practical method of 
assessment. 

Above all, the very real insights obtained in the eighteenth and early nineteenth centuries are 
disregarded; it is these insights into the behaviour of the voussoir arch, deepened now and made more 
secure by the basic plastic theorems, that make it possible to propose an alternative method of design. 
 
A 'PLASTIC' METHOD OF ANALYSIS 
 
The idea of the geometrical factor of safety discussed in Chapter 2 may be developed in order to give 
an alternative way of assessing the safety of an arch. It was seen that there were limiting 
configurations for the state of any given arch. For example, the idealized semi-circular arch carrying 
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its own weight only has the two limits of Figs. 4.5(a) and (b); in the first the abutment thrust has its 
least possible value Hmin, and in the second the thrust has increased to its greatest possible value 
Hmax. Neither 'elastic' theory nor 'plastic' theory indicates which of these two states is 'correct'; the 
actual state of the arch at any given time will depend on the current state of the environment (that is, 
on whether the abutments have given way slightly, or settled differentially, or approached each 
other). 
 

 
Fig. 4.5 

 
What can be said, however, is that the values of Hmin and Hmax marked in Fig. 4.5 will be 

fairly close to each other; the values can be determined analytically (for this idealized example) or, 
more generally, by drawing funicular polygons by the methods of Chapter 1. If the thickness of the 
arch is reduced slightly the values of Hmin and Hmax will approach closer together, and it was seen that 
there is a limit, Fig. 4.5(c), cf. Fig. 2.9, where the arch has been shrunk to such a state that the 
position of the thrust line, and the corresponding value of the thrust H, is unique. As was noted in 
Chapter 2, the ratio of the thickness of the arch in Fig. 4.5(a) or (b) to that of Fig. 4.5(c) may be 
defined as the geometrical factor of safety. 

Figure 4.6(a) shows the bridge of Fig. 4.1 with a point load carried at some general position. 
The funicular polygon equilibrating the dead weight of the arch and its fill, together with the point 
load P, may be drawn, and it will be supposed that this thrust line lies within the arch. The arch may 
then be shrunk to the state of Fig. 4.6(b) at which it is only just possible to contain the thrust line. 
During this process the pole of the force polygon may have to be shifted (if the problem is being 
tackled on the drawing board), and it will eventually be forced to lie in a unique position. This is 
because, as was seen, only one funicular polygon can be drawn to pass through three given points; 
the final formation of four hinges in Fig. 4.6(c), corresponding to the thrust line of Fig. 4.6(b), both 
fixes that thrust line and also gives one further piece of information, namely the thickness of the arch 
in its minimum state. The problem may in fact be solved by writing a set of simultaneous equations, 
as will be seen in Chapter 5; whatever method is used, a geometrical factor of safety may be 
calculated by comparing the arches of Figs. 4.6(a) and (b). 
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Fig. 4.6 

 
The whole analysis may now be repeated for a different position of the live load P, and a new 

value of geometrical factor calculated. A numerical investigation of this sort is made in Chapter 5; 
Fig. 4.7 shows the essential results obtained from the analysis of a complete traverse of a bridge by a 
given live load P.  
 

 
Fig. 4.7 

 
The precise shape of the curve in Fig. 4.7 will depend on the geometry of an individual bridge and on 
the ratio of live load to dead load, but the general features will be as sketched. In particular, the 
minimum value of the geometrical factor of safety will occur when the live load is at about quarter 
span, and this minimum value is reasonably 'flat'; There is encouragement, therefore, to assume that, 
for the purpose of developing a quick approximate method of analysis, the worst position of the live 
load is exactly at quarter span. Further, it will be assumed that the mechanism of collapse of the 
minimum-thickness arch will be that indicated by the position of the thrust line in Fig. 4.8, over a 
wide range of different shapes of arch (cf. Fig. 4.6). 
 

 
Fig. 4.8 
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Figure 4.9 shows the dimensions of the arch. The arch ring is not necessarily of uniform 
thickness, and is shown in its minimum configuration with all the 'shrunk' thicknesses bearing the 
same ratio to the corresponding actual values at each section of the span. The road surface is 
horizontal. The fill is assumed to have no strength and to transmit the live load P without dispersion 
to the arch ring; both fill and arch ring have unit weight g. The calculations are normalised with 
respect to the rise hc of the arch, so that the parameter a = hq/hc gives some measure of the shape of 
the arch, the parameter b = h0/hc gives a measure of the depth of the bridge (ring plus fill) at the 
crown, and t = t/hc is a measure of the vertical thickness of the arch ring at quarter span. 
 

 
Fig. 4.9 

 
The end quarter of the bridge has a dead weight W1 with a centre of gravity as shown in Fig. 

4.9; W2 is shown similarly. The position of the funicular polygon is known at the four sections 
indicated in Fig. 4.8 when the arch is on the point of collapse. As has been discussed, these four 
known locations enable the funicular polygon to be fixed uniquely, and also furnish a single 
relationship between the quantities marked in Fig. 4.9. There are various ways of establishing this 
relationship, but perhaps the easiest is to write statical equations of equilibrium. The way this can be 
done is shown numerically in Chapter 5; for the quantities marked in Fig. 4.9, with the collapse 
mechanism of Fig. 4.8, the required relationship is 
 

  (4.16) 
 

Equation (4.16) gives the value of live load P which would just cause collapse of the arch. 
When (3 – 2a) = (2 + k)t, the collapse load is theoretically infinite. This corresponds to an arch of the 
proportions shown in Fig. 4.10, for which straight lines can be drawn to the springings from the 
extrados at quarter span (cf. Fig. 2.10(a)). 
 

 
Fig. 4.10 

 

P = 16
W2x2 a + 1- 1

4k( )t{ }- W1x1 + 1
4W2( ) 1- a( )- 1+ 1

4k( )t{ }
3- 2a( )- 2 + k( )t
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As a further approximation made in order to get (4.16) into a form suitable for general 
application, the weight W1 (and the corresponding value of x1 defining the centre of gravity, Fig. 49) 
has been calculated from the trapezium of Fig. 4.11; the intrados of the arch ring has been replaced 
by a straight line. With a similar approximation for W2, and for a unit width of bridge, (4.16) 
becomes 
 

  (4.17) 
 

 
Fig. 4.11 

 
Finally, in order to reduce by one the number of parameters in the equation, the constant k 

expressing the vertical thickness of the arch ring at the abutments, Fig. 4.9, will be taken as unity. 
Thus (4.17) gives the intensity of live load necessary to cause collapse of the bridge in terms of only 
three parameters, a, b and t. The approximation k = 1 is, as a corollary of the lower-bound theorem, 
safe, but not excessively so. Figure 4.8 shows that the positions of three of the four hinges are fixed 
without involving the value of k, and the variation of the thickness of the arch at the fourth 
(abutment) hinge has a correspondingly small effect on the value of P. This physical argument is 
reinforced by an examination of the relative magnitudes of the quantities in (4.17); the magnitude of 
the non-dimensional ring thickness t, with which k is always associated, is usually small compared 
with the values of a and b. 

Equation (4.17) is the basis for a quick method of assessment of masonry arches. Table 4.1 
gives numerical values (for k = 1) for 
 

t  = 0.04 (0.02) 0.30 
a = 0.60, 0.65, 0.68 (0.02) 0.82, 0.85, 0.90 (4.18) 
b = 0,1. 

 
The value of P is a linear function of b, so that linear interpolation for a given value of b is exact. 
With the fairly close tabulation, no great errors are introduced by linear interpolation for a and t. 
Examples of the use of Table 4.1 are given in Chapter 5. 

The accurate analysis of an actual bridge arch may be made after a preliminary quick 
assessment from the Table. If the worst live load case is indeed that of a single live load, then the 
approximate method will usually give a result close to the exact value; the actual value can be 
checked by the drawing of funicular polygons, and again examples are given in Chapter 5. If 
however the specified design loading consists of a train of loads, then a graphical method must be 
used from the start. 

In any case, both the approximate solution and the exact analysis will furnish, for a given 
bridge, estimates of its geometrical factor of safety. The choice of a suitable value for that factor 
remains an open question. The matter is reminiscent of the situation in the early days of the 
development of plastic theory as applied to steel frames; a suitable value of load factor (about 1.75) 

P = P
1
6glhc

=
1+ 3b - a( ) a + 1- 1

4k( )t{ }- 6+ 9b - 5a( ) 1-a( )- 1+ 1
4k( )t{ }

3- 2a( )- 2 + k( )t
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was established by the comparison of plastic designs with conventional elastic designs. The Pippard 
method gives some help here, but what is needed is a comprehensive survey of existing bridges. In 
the mean time, a more limited experience indicates that a geometrical factor of 2 might be 
appropriate, and this factor has indeed been used in the practical rehabilitation of some masonry 
arches. 

From the remarks made in Chapter 2, it will be appreciated that the adoption of a geometrical 
factor of 2 is equivalent to the adoption of a middle-half rule. If a purely graphical design were to be 
made, then the arch ring would be represented on the drawing board by a shrunk arch of half the 
actual thickness. 
 
Table 4.1 Values of p (linear interpolation for b is accurate) 

t 
a = 0.60 a = 0.65 a = 0.68 a = 0.70 a = 0.72 a = 0.74 

b = 0 b = 1 b = 0 b = 1 b = 0 b = 1 b = 0 b = 1 b = 0 b = 1 b = 0 b = 1 
0.04         -0.24 -0.11 -0.20 0.10 
0.06       -0.24 -0.09 -0.20 0.12 -0.17 0.35 
0.08     -0.24 -0.07 -0.20 0.15 -0.16 0.38 -0.13 0.62 
0.10   -0.26 -0.15 -0.20 0.18 -0.16 0.42 -0.12 0.67 -0.08 0.93 
0.12   -0.22 0.10 -0.15 0.46 -0.11 0.71 -0.07 0.98 -0.03 1.26 
0.14   -0.17 0.37 -0.10 0.76 -0.06 1.03 -0.02 1.32 0.02 1.63 
0.16 -0.24 0.04 -0.12 0.67 -0.05 1.09 0.00 1.39 0.04 1.71 0.08 2.04 
0.18 -0.18 0.32 -0.06 1.00 0.01 1.46 0.06 1.79 0.11 2.13 0.15 2.51 
0.20 -0.13 0.62 0.00 1.37 0.08 1.87 0.13 2.23 0.18 2.62 0.23 3.03 
0.22 -0.06 0.97 0.08 1.78 0.16 2.33 0.21 2.73 0.26 3.16 0.31 3.63 
0.24 0.01 1.34 0.16 2.24 0.24 2.85 0.30 3.30 0.36 3.79 0.41 4.31 
0.26 0.09 1.77 0.25 2.76 0.34 3.45 0.40 3.95 0.47 4.51 0.53 5.11 
0.28 0.18 2.24 0.35 3.35 0.45 4.13 0.52 4.71 0.59 5.34 0.67 6.05 
0.30 0.28 2.78 0.47 4.03 0.58 4.92 0.66 5.59 0.75 6.34 0.83 7.15 

 
Table 4.1 continued 

t 
a = 0.76 a = 0.78 a = 0.80 a = 0.82 a = 0.85 a = 0.90 

b = 0 b = 1 b = 0 b = 1 b = 0 b = 1 b = 0 b = 1 b = 0 b = 1 b = 0 b = 1 
0.04 -0.17 0.32 -0.14 0.55 -0.10 0.79 -0.08 1.04 -0.04 1.44 0.02 2.18 
0.06 -0.13 0.58 -0.10 0.83 -0.07 1.09 -0.04 1.36 0.00 1.80 0.06 2.61 
0.08 -0.09 0.88 -0.06 1.14 -0.02 1.42 0.01 1.72 0.05 2.20 0.10 3.10 
0.10 -0.04 1.20 -0.01 1.49 0.02 1.80 0.05 2.12 0.09 2.64 0.15 3.65 
0.12 0.01 1.56 0.04 1.87 0.07 2.21 0.11 2.57 0.15 3.15 0.21 4.28 
0.14 0.06 1.96 0.10 2.30 0.13 2.67 0.17 3.07 0.21 3.72 0.27 5.00 
0.16 0.12 2.40 0.16 2.79 0.20 3.20 0.24 3.64 0.28 4.38 0.35 5.85 
0.18 0.19 2.91 0.24 3.34 0.28 3.80 0.31 4.30 0.37 5.14 0.44 6.85 
0.20 0.27 3.48 0.32 3.96 0.36 4.49 0.40 5.06 0.46 6.04 0.55 8.05 
0.22 0.36 4.13 0.41 4.68 0.46 5.29 0.51 5.95 0.58 7.10 0.68 9.52 
0.24 0.47 4.89 0.53 5.53 0.58 6.23 0.64 7.01 0.72 8.37 0.85 11.35 
0.26 0.59 5.78 0.66 6.52 0.72 7.35 0.79 8.29 0.89 9.95 1.06 13.71 
0.28 0.74 6.84 0.82 7.72 0.90 8.72 0.98 9.86 1.11 11.93 1.35 16.85 
0.30 0.92 8.11 1.01 9.18 1.11 10.41 1.21 11.84 1.39 14.51 1.75 21.25 

Example. For l = 7.20 m, hc = 2.66 m, hq = 2.08 m, h0 = 1.00 m, t = 320 mm, 
g = 1.67 t/m3, a = 0.78, b = 0.376, t = 0.12, glhc/6 = 5.33 t/m : from Table, p = 0.73 
and therefore P = 3.9 t/m 
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5 
 
Practical examples 
 
 
 
THE LINE OF THRUST 
 
A few examples of the analysis and design of actual bridges will illustrate the ideas developed in the 
previous chapters. Although the quick method of assessment given in Chapter 4 may well be useful 
in a preliminary analysis, it is evident that final calculations will involve the construction, on the 
drawing board or analytically, of funicular polygons. It was shown in Chapter 1 that a funicular 
polygon can be drawn by purely graphical means, but in fact labour is often saved by some 
preliminary calculation. 

It is convenient to refer the calculations to an origin at the springing of the arch (cf. Fig. 
1.13(a)). In Fig. 5.1 the solid line OA represents the intrados (or the centre-line, or any other 
reference line) of the arch ring, and the broken line represents the line of thrust, passing at a vertical 
distance D above the origin. 
 

 
Fig. 5.1 

 
At any section A of the arch, the vertical distance between the reference line OA for the arch and the 
line of thrust is ÎA. The (non-uniform) vertical loading acting on the arch has intensity w per unit 
horizontal length; then statical equilibrium (for moments taken about the right-hand end of the thrust 
line) requires that 
 

 , (5.1) 

that is 

 , (5.2) 

In this equation, the quantities V and H are, as marked in Fig. 5.1, the components of thrust at the 
abutment. If their values have not yet been determined, then the three quantities D, V/H and 1/H in 

yA+ ÎA -D( )H + xA - z( )wdz =VxA0

xA

ò

ÎA= D - yA +
V
H
xA -

1
H

xA - z( )wdz
0

xA

ò
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(5.2) may well be regarded as the three redundant quantities for the arch, and (5.2) may be written for 
any section x (dropping the subscript A): 
 

 , (5.3) 

When an actual funicular polygon is drawn, the applied loads will be approximated by a series 
of point loads Wr, Fig. 5.2. If the section under consideration is taken at the nth load Wn, then the 
integral in (5.3) is replaced by the expression 
 

 , (5.4) 

 
Fig. 5.2 

 

 
Fig. 5.3 Teston Bridge, Kent, 13th Century and later. The ties holding the 

spandrel walls above the arch barrel were removed in the rehabilitation of 1979. 
 

This expression may be evaluated (in tabular form) for given loading; an example is given in Table 
5.2 below. Equation (5.3) then gives the position of the thrust line relative to the arch centre line. If 
the position is known at any three sections, then the unknown quantities D, µ and n may be 
determined, and the position is then calculable at any other section (see Table 5.3 below). A first 
example will illustrate how the equations may be set up and solved. 

 

Î=D - y + µx -n x - z( )wdz
0

x

ò

xn Wr - xrWr
r =1

n

å
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Fig. 5.4 Rough masonry of Teston Bridge, Kent, forming an arch ring of about 200-400 mm. 

 
 
TESTON BRIDGE, KENT 
 
Teston Bridge, Figs. 5.3 and 5.4, dates from the 13th century; it was rehabilitated in 1979 in such a 
way as to permit unrestricted use. To this end, four different conditions of loading were specified, 
and of these it turned out that the most critical was a singe axle of 11 ton; this load will be taken as a 
line load across the full width (3.5 m) of the bridge. With an allowance for impact, the line load has 
intensity 40 kN/m. 

Such a knife-edge load is, of course precisely that envisaged in the development of the quick 
method of assessment (Fig. 4.8 leading to Table 4.1). The leading dimensions of the main navigation 
arch at Teston are marked in Fig. 5.5; they are l = 7200, hc = 2660, hq = 2080 and h0 = 1000 mm. 
From these values, 

 
a = hq/hc = 0.78 , 
 b = h0/hc = 0.376 , (5.5) 

 
 

 
Fig. 5.5 

 
The material weight (arch and fill) was taken as 16.7 kN/m3, so that 1/6glhc = 53.3 kN/m; the 
dimensionless point load has value p = 40/53.3 = 0.75. Table 4.1 then gives the value of t required 
for the arch just to be stable as 0.122. The vertical thickness t of the arch at the quarter points should 
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therefore have a minimum value of 0.122 ´ 2660 = 325 mm, which corresponds to a radial thickness 
of about 280 mm. 

It will be seen from the annotation in Fig. 5.5 that there might be some doubt as to the ability 
of the arch to carry the specified point load; with a geometrical factor of safety of 2, the arch ring 
should be about 560 mm thick. However, the next step is to make accurate calculations to confirm 
that the approximate minimum thickness of 280 mm is correct. 

The span (7.20 m) of the arch was divided into twelve equal portions of 0.60 m, and the 
weights of each of the twelve sections was computed. The profile of the arch is given in Table 5.1, 
and the loads acting on the arch ring are shown in Fig. 5.6. Following the arguments relating to Fig. 
5.1, moments will be taken about various points in the arch, and Table 5.2 records in an orderly way 
the loads and the moments of the loads. In this case, in order to simplify the equations, the 
calculations are referred to the right-hand end of the arch, and the unknown quantities V and H are 
introduced as shown in Fig. 5.7. 

The way in which the calculations are made, and Table 5.2 used, is as follows. Figure 5.7 
shows a point load P placed at the quarter point C, as in Fig. 4.8, and the hinge positions correspond 
also to those of Fig. 4.8. (It turns out that this hinge pattern is slightly incorrect, as will be seen.) The 
arch in Fig. 5.7 has the minimum radial thickness d to prevent collapse by the formation of hinges at 
the assumed points O, C, F and O'; the second set of numbers in Table 5.1 gives the vertical thickness 
of the arch ring at the various points in the arch. 

 
 

 
Fig. 5.6 

 
 
Table 5.1 
Point O A B C D E F 
Profile of intrados, m 0 1.03 1.65 2.08 2.37 2.56 2.66 
(l/d)✕vertical depth of ring 2.638 1.618 1.313 1.161 1.077 1.028 1.004 
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Table 5.2 
Point Load, kN ∑ load, kN Distance, m Product, kN m ∑ product, kN m 

O'     0 

A' 25.3 0 0.6 0 0 

B' 19.3 25.3 0.6 15.18 15.18 

C' 15.2 44.6 0.6 26.76 41.94 

D' 12.5 59.8 0.6 35.88 77.82 

E' 10.8 72.3 0.6 43.38 121.20 

F 10 83.1 0.6 49.86 171.06 

E 10.8 93.1 0.6 55.86 226.92 

D 12.5 103.9 0.6 62.34 289.26 

C 15.2 116.4 0.6 69.84 359.10 

B 19.3 131.6 0.6 78.96 438.06 

A 25.3 150.9 0.6 90.54 528.60 

O  176.2 0.6 105.72 634.32 
 
The analysis consists merely in taking moments about the hinge points F, C and O in turn for the 
whole portion of the arch lying to the right of the point in question; the data required for taking 
moments about C have been transferred from Table 5.1 to Fig. 5.7. Thus Tables 5.1 and 5.2 together 
may be used to give the following equations: 
 

 (5.6) 

The unknown quantities V and H may be eliminated from these equations to give a single relationship 
between the required depth d of the arch ring and the value of the point load P: 
 

d(l + 0.00983P) = (0.0281 + 0.00757P) , (5.7) 
 
Thus for P = 40 kN, the value of d is determined as 0.237 m (that is, 237 mm). (It should be noted 
that the equations must be solved with care; small differences of large numbers are involved, and 
rounding errors can have a marked effect on the final results.) 
 

 
Fig. 5.7 

At F: 3.6 V - 2.66- 2.638d( )H                =  171.06
At C: 5.4 V - 2.08-1.161d - 2.638d( )H =  359.10
At O: 7.2 V - 2.638d( )H -1.8P               =  634.32

  
ü 

ý 
ï 

þ 
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The calculations made so far are 'unsafe' for two reasons. In the first place; the hinge pattern 

of Fig. 5.7 is an assumed pattern; there may be (and in fact there is) a more critical arrangement of 
hinges. Secondly, the worst position of the point load may not be at the quarter-span point C, but 
slightly away from quarter span. 

The correctness of the hinge pattern of Fig. 5.7 is best confirmed by constructing the thrust 
line on the drawing board. However, this construction may also be made analytically by use of (5.3) 
and (5.4), where in fact the loading terms (5.4) are given in Table 5.2. If (x,y) are the coordinates of 
the intrados of the arch (and the values of y for x increasing in steps of 0.6 m are given in Table 5.1), 
and if the origin is taken at O in Fig. 5.7, then the general expression for the vertical distance Î 
between the line of thrust and the intrados is given by 
 

, (5.8) 

In this equation, the brackets {} are 'Macaulay' brackets; the term is present in the equation only for 
1.80 > x. The last term S is taken from the last column of Table 5.2. (Equations (5.6) are, of course, 
just specific cases of the general equation (5.8), written in a slightly different order.) 

The values of V and H, corresponding to the solution of (5.7) for P = 40 kN, are 91.3 and 77.6 
kN respectively, and (5.8) may be solved for Î at each section of the arch, with, of course, d set equal 
to 237 mm. The results are given in the first column of Table 5.3, and the values may be compared 
with the position of the thrust line sketched in Fig. 5.7. At C, for example, the line of thrust lies 276 
mm above the intrados, and the radial thickness d of the arch at that point is 276/1.161 = 237 mm. 
Similarly, at O' the value of d is given by 626/2.638 = 237 mm, and there are zeros at points O and F. 
 
 Table 5.3 

 Î, mm 
Point Trial 1 Trial 2 

 Fig. 5.7 Fig. 5.8 
O 0 90 
A -65 0 
B 85 122 
C 276 289 
D 179 187 
E 86 90 
F 0 0 
E' 36 34 
D' 79 77 
C' 125 126 
B' 193 200 
A' 303 319 
O' 626 657 

  
Thus the equations have been solved correctly, but it is at once clear from Table 5.3 that the 

assumed hinge pattern is not correct. There is a negative value of Î at point A, implying that the 
thrust line has emerged from the masonry. The obvious pattern of hinges for the next trial is shown in 
Fig. 5.8 (cf. Fig. 4.6), and the analysis may be repeated with hinges at A, C, F and O'. Equations (5.6) 
are replaced by 
 

 (5.9) 

Î= 2.638d - y( )+ 1
H

7.20- x( )V - 1.80 - x{ }P - S[ ]

At F: 3.6 V - 2.66- 2.638d( )H                =  171.06
At C: 5.4 V - 2.08-1.161d - 2.638d( )H =  359.10
At A: 6.6 V - 2.638d( )H -1.2P               =  528.60

  
ü 
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Fig. 5.8 

 
The first two of these equations are identical with those of (5.6). For P = 40 kN, (5.9) solve to 

give d = 0.249 m; that is, the radial depth of ring is some 12 mm greater than that of Fig. 5.7. The 
correctness of the pattern of hinges may be confirmed by the construction of the funicular polygon, 
Fig. 5.9 (the intrados only of the arch is shown); alternatively, the second column of Table 5.3 gives 
numerically the information of Fig. 5.9. 
 

 
Fig. 5.9 

 
The whole analysis must now be repeated with the load displaced to a possibly more 

unfavourable point in the span. Similar calculations made for the load placed at B and at D lead to the 
arch-ring depths given in Table 5.4 (the values have been rounded). Thus in fact, for this example, 
the load placed at quarter-span gives the most critical value of arch-ring depth, although the 
neighbouring point D (distant 0.6 m) is almost equally critical. 
 
 Table 5.4 

Load position B C D 

Arch-ring depth (mm) 210 250 240 
 

The quickly-assessed value of arch-ring depth of 280 mm has been reduced to 250 mm by the 
more accurate analysis. The final recommendation for the rehabilitation of the bridge was based on a 
geometrical factor of safety of 2; that is, the minimum required depth of 250 mm leads to a thickness 
of the actual arch of 500 mm. 

The values of V and H quoted above indicate that the value of the (inclined) thrust at the 
abutment is about 150 kN/m; with an arch ring of 500 min depth, the corresponding mean stress is 
0.30 N/mm2. As is usual with masonry bridges of this size, this stress is low. 
 As an alternative to the single axle of 11 ton, the next most critical loading specified for the bridge 
related to a four-axle vehicle of total mass 30 ton and length about 5 m. This loading can be 



 62 

investigated by the combination of analysis and drawing used for the single load; in equations similar 
to (5.6), for example, instead of the term 1.8P there would be contributions from all four axles. 
Because of the length of the vehicle, 5 m, compared with the span of 7.2 m, the live loading is more 
'balanced' than the single point load; the worst positioning of the four axles leads to a required depth 
of arch of less than 200 mm. 
 
THE 'QUICK' METHOD OF ASSESSMENT 
 
The calculations summarized in the last section are typical of those for arches with spans of the order 
of Teston bridge, and the approximate method of assessment, given in Table 4.1, leads to a good 
estimate of the depth of arch ring required to carry a specified point load. As final examples of the 
use of this 'quick' method, data are presented below for the five-span neighbouring bridge in Kent, 
Twyford bridge, Fig. 5.10. This bridge has large piers and four river arches; there is a small fifth arch 
carrying, with shallow cover at its crown, a causeway over the flood plain. From a survey of the 
bridge average dimensions were evaluated for each arch; the arches are not in fact quite symmetrical 
and the roadway is not quite horizontal. These average dimensions are shown in Table 5.5, together 
with the derived values of the dimensionless quantities a and b. The unit weight of material was 
taken as 23 kN/m3, from which the value 1/6glhc was calculated for each span; the design line load 
was P = 30 kN/m, leading to the tabulated values of p. 
 
Table 5.5 

Span l (m) hc (m) hq (m) h0 (m) a b 1/6glhckN/m p t t(m) d(mm) 

1 4.40 2.12 1.70 1.44 0.80 0.68 35.8 0.84 0.07 0.148 130 

2 5.31 2.77 2.15 0.83 0.78 0.30 56.4 0.53 0.11 0.305 260 

3 5.13 2.73 2.29 0.93 0.84 0.34 53.7 0.56 0.06 0.164 140 

4 5.13 2.22 1.79 0.83 0.81 0.37 43.7 0.69 0.09 0.200 170 

5 4.11 2.04 1.61 0.42 0.79 0.21 32.1 0.93 0.18 0.367 320 
           

The flood arch, No. 5, is most critical, mainly because of the thin cover. The design of this 
arch (that is, the establishment of the value of t) must be carried out so that the required value of p, 
0.93, is attained for a = 0.79, b = 0.21. Table 4.1 gives values of p (for b = 0, 1) for a = 0.78 and a = 
0.80, and Table 5.6 may be drawn up for b = 0.21. Linear interpolation between a = 0.78 and a = 
0.80 gives the final column of values for a = 0.79. 

 

 
Fig. 5.10 Twyford Bridge, Kent, with river in heavy flow. 
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 Table 5.6 

 Values of p for b = 0.21 

 a = 0.78 a = 0.80 a = 0.79 

t = 0.16 0.71 0.83 0.77 

t = 0.18 0.89 1.02 0.96 

t = 0.20 1.08 1.23 1.16 
 
It will be seen that, to two significant figures, t = 0.18 is the appropriate dimensionless value of arch-
ring thickness for p = 0.93, and this is the value entered in Table 5.5. The penultimate column of this 
table gives the vertical thickness t at the quarter point of the arch; the arch ring is about 15% less in 
radial dimension, and the final column shows these thicknesses for the arch rings in each span. 

If a geometrical factor of safety of 2 were specified, then the recommendation would be to 
build up the arch rings in the first four spans to say 250 mm, 550 mm, 300 mm and 350 mm 
respectively. In the case of the flood arch No. 5 a constant radial thickness of something over 600 
mm is apparently needed, whereas the value of h0, which includes both arch ring and cover at the 
crown, is only 420 mm. The analysis indicates, correctly, that extra dead weight applied to the arch 
would increase its strength against live loading. 

However, it will be appreciated, from Fig. 5.8, that the thickness of the arch ring at the crown 
is of secondary importance; it is the thickness of the arch at the quarter points and at the springings 
that will control its strength when a live load is applied at a quarter point. In the case of arch No. 5 a 
first trial design would thus retain the crown thickness of 420 mm, but the arch ring could be 
increased to say 600 mm at the quarter points and further increased towards the springings. The 
resulting arch of non-uniform thickness would then have to be investigated for different positions of 
the line load, since it is possible that the quarter-span points would not remain the most critical. 
 
THE DEAD-LOAD LINE OF THRUST 
 
Investigation of the effect of live-loading on an arch (for example, the single knife-edge load 
considered in the previous examples) can often be made easier if the calculations are referred to the 
dead-load line of thrust (rather than to the centre line of the actual arch, or to the intrados). To 
illustrate the way in which such calculations can be made, the arch of Fig. 5.11 (a) is supposed to be 
subjected to the two idealized dead loads W shown; there are no other dead loads acting. Thus the 
dead-load line of thrust consists of the three straight lines shown in Fig. 5.11 (a), and, with the usual 
notion of an imaginary shrinking of the real arch, a corresponding geometrical factor of safety can be 
determined. 
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Fig. 5.11 

 
The effect of a single concentrated live load P will now be considered, and for this purpose 

the real arch will be abandoned for the moment, and the calculations referred to the arch of Fig. 
5.11(b). Thus in Fig. 5.11(c) the point load is shown acting in a general position (defined by the 
parameter x) on the 'dead-load arch'. The thrust line for the loading is also shown in Fig. 5.11(c), and 
it has been drawn in a special and unique position; its maximum departure (vertically) from the arch 
centre line is a quantity e (whose value is to be determined). An arch of the shape of Fig. 5.1l(b) and 
vertical thickness 2e could thus just contain the thrust line of Fig. 5.11(c), and moreover this is the 
thinnest arch that could contain the thrust line. If this arch of thickness 2e is fitted back into Fig. 5.11 
(a), then the new geometrical factor of safety of the real arch, taking account of the live load P, is at 
once calculable. 

The point of referring the calculation to the dead-load line of thrust will become apparent if 
the value of e in Fig. 5.1l(c) is determined. If moments are taken (in the way that led to (5.6)) at 
points on the thrust line corresponding to sections C, X and A on the arch, the following equations 
may be written: 
 

 (5.10) 

As before, V and H can be eliminated from these equations, and the quantity e determined as a 
function of W, P and x: 
 

At C: Vl                              =  H h - 2e( )
At X: Vl 2 - x( )-Wl 1- x( ) =  Hh          
At A: 3V - 3Wl - Pl 1 + x( ) =  H -2e( )    
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, (5.11) 

However, if V and W are eliminated from (5.10), then the value of e is given by 

, (5.12) 

where the value of H may be written 

, (5.13) 

Equation (5.13) shows that, if e is small compared with h, then the value of the abutment thrust H is 
close to the dead-load value W1/h; in effect, a relatively small live load P will not alter markedly the 
abutment thrust. If H can indeed be assumed to be fixed in value, then (5.12) shows that the 
eccentricity of the live-load thrust line from the dead-load thrust line depends only on the live load P; 
the loads W do not occur explicitly in (5.12), but are of course implicit in the value of H. More 
particularly, the product He, which gives the 'bending moment' in the arch referred to the dead-load 
line of thrust, is purely a function of the live load. 

This matter is at once apparent if the analogous frame problem is studied, Fig. 5.12. If the 
frame were designed by the plastic theory, then the appropriate collapse mechanism would involve 
the four hinges at A, X, C and D; moreover, since the values of e have been set equal in Fig. 5.11, the 
values of Mp of the corresponding full plastic moments in Fig. 5.12 will be the same at all four 
hinges. (For an arch of variable thickness, leading to different values of eccentricity, as for example 
in Fig. 5.7, the values of Mp will differ from hinge to hinge. An example is given below, Fig. 5.19.) 
 

 
Fig. 5.12 

 
The motion of the mechanism in Fig. 5.12 may be referred to a rotation q of the portion XC of 

the arch about the instantaneous centre I. A straightforward analysis of the geometry of the motion 
leads to values f and y of the rotations marked in Fig. 5.12 given by 

 

 , (5.14) 

Thus the work done by the loading on a small motion of the mechanism is 

 , 

and, by virtue of (5.14), the terms in W cancel. 
This is, of course, a particular example of a general property. Since the centre line of the arch 

being considered coincides with the dead-load line of thrust, then any small inextensional 
deformation of the centre line will lead to zero virtual work of those dead loads. Thus any mechanism 
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of the type sketched in Fig. 5.12, referred to the dead-load thrust line, will involve work terms only 
for the additional live loading. 

The total hinge rotation in Fig. 5.12 is 2(q + f + y), so that, using (5.14) and equating the 
work done by the loads to the work dissipated in the hinges, it is found that 
 

, (5.15) 

Thus (5.12) is recovered from this analysis of the analogous frame. Equation (5.15) is exact because 
it has been assumed that the plastic hinges lie on the centre line of the analogous arch. The actual 
hinges between voussoirs will occur slightly off the centre line (in fact at eccentricities e in Fig. 
5.11), and the actual collapse mechanism will lead to some small extensional deformation of the 
centre line. 
 

The maximum value of Mp in (5.15), that is, of He in (5.12), occurs for x = 4 Ö15 = 0.127 and 
is equal to 
 

, (5.16) 

If e is indeed small compared with h so that H may be approximated by its dead-load value of W1/h, 
from (5.13), then 
 

, (5.17) 

(For Teston bridge, considered earlier in this chapter, the appropriate value of W might be half the 
dead load on the arch, that is, 88.1 kN from Fig. 5.6 or Table 5.2, while the value of P was 40 kN. 
Thus 0. 1 27P/W has value 0.06 in this case.) 

The problem of Figs 5.11 and 5.12 has been worked through analytically, but it is more 
convenient to use graphical methods for arches of complex geometry. If graphical methods are used, 
then the dead loads may be ignored completely for the purpose of investigating the live load. For the 
problem just considered, in order to calculate the value of Mp at the hinge points of Fig. 5.12, it is 
sufficient to consider the action of the point load P acting alone. In Fig. 5.13(a) the thrust line has 
been positioned to give four equal bending moments, as before. In practice this would be done very 
quickly by trial and error; from the simple geometry of Fig. 5.13(a); it is found that 
 

, (5.18) 

The thrust line is shown separately, and in a general position, in Fig. 5.13(b); consideration of statics 
leads to the expression 
 

, (5.19) 

Thus for h1 = h + 2e', h2 = h, 11 = (1 + x)l, 12 = (2 - x)l, the value of T is found to be 

, (5.20) 

so that, using (5.18) and (5.19), 

Mp =
Pl
2
1- x2

4 - x
æ 
è ç 

ö 
ø ÷ 

Mp = He= Pl 4 - 15( )= 0.127Pl

e =0.127 P
W
h

2 ¢ e 
h

=
1 - x
2 - x

T = P
h1
l1
+ h2
l2

T =
Pl
h

 
1+ x( ) 2 - x( )
4 - x( )



 67 

, (5.21) 

Once again (5.12) has been recovered, but this time with much less labour. This saving will be 
demonstrated by the calculations of the next example. 
 

 
Fig. 5.13 

 

 
Fig. 5.14 Voûte de la cathédrale Lincoln (Nicholson 1842). 

 

T ¢ e = Pl
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A STONE SPAN AT LINCOLN 
 
Between the western towers of Lincoln Cathedral, and just above the nave vault, there is a thirteenth-
century slender stone arch of span 8.54 m, Fig. 5.14. The northern springing of the arch is some 300 
mm lower than the southern, due apparently to settlement. The rise of the arch relative to the chord 
was determined in 1836 as about 380 mm. The cross-section of the arch has a uniform profile, 
virtually rectangular, and is about 500 mm wide and 280 mm deep. The spandrels of the arch have 
stone backings which will contribute to the loading but which will be assumed not to act structurally. 
(The function of the arch is obscure; it may have served as a setting-out point for the construction of 
the nave vault in l240-50.) 

The centre-line of the arch is shown to an exaggerated vertical scale (✕6) in Fig. 5.15; it will 
be seen that the arch is two-centred and has a distinct point Also shown in Fig. 5.15 is a possible line 
of thrust for the self-weight of the arch plus its backings. In order to draw this dead-load line of thrust 
the arch was divided into 14 segments each of length 0.61 m, and the line of thrust has been 
positioned to lie as close as possible to the centre line of the arch. The difference between the two is 
±33 min at sections 0, 3, 7 and 12 as marked in Fig. 5.15 and it may be concluded that an arch of the 
same shape as the actual arch at Lincoln but having a depth of 66 mm would just contain its own 
dead-load line of thrust. The geometrical factor of safety, against dead load only, is therefore 280/66 
= 4.2. 

 
Fig. 5.15 

 
The analysis also gives the value of the horizontal component of the abutment thrust as 87 kN. 

The arch has a cross-sectional area of about 0.14 m2, so that the mean compressive stress is about 
0.62 N/mm2. The arch is made of oolitic limestone with a crushing strength of about 15 N/mm2. The 
mortar beds between the voussoirs will of course have a lower strength; nevertheless the working 
value of the mean compressive stress seems satisfactory. 

It was noted in 1842 that the arch vibrated perceptibly when jumped upon, and that it was the 
constant practice of visitors thus to prove its elastic properties (it still is). The effect of a point load 
placed anywhere on the arch will therefore be considered. 

Figure 5.16(a) shows a unit point load placed on an arch having the profile of the dead-load 
line of thrust, and calculations will be made to determine the value of the 'full plastic moment' 
corresponding to collapse by formation of the hinges shown. On the drawing board the problem to be 
solved is that of Fig. 5.16(b), and it is clear that the value of e can be found very easily. Associated 
with the thrust line of Fig. 5.16(b) will be a certain horizontal, thrust T, whose value may be found 
from (5.19), Fig. 5.13; the product Te then gives the required value of full plastic moment. As the 
point load is traversed across the arch, the critical mechanism can switch to that of Figs. 5.17(a) and 
(b), but the analysis is equally straightforward. 
 

 
Fig. 5.16 
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Fig. 5.17 

 
Figure 5.18 records the results of analyses made for 14 positions of a unit live load. The worst 

position of the load is as usual at about quarter span; the diagram is slightly asymmetrical, and the 
largest value of Mp is found to be 0.396 Nm for a load of 1 N. Thus, taking a point load of 2 kN (a 
heavy man jumping on the arch), and using the basic abutment thrust of 87 kN, the effect of the live 
load is to displace the dead load line of thrust by a maximum amount e, where 

 
(0.396) (2) = (Î) (87) , 

or 
Î = 0.009 m . (5.22) 

 

 
Fig. 5.18 

 
This means that an arch of thickness 18 mm having the broken-line profile in Fig. 5.15 would just 
contain the line of thrust arising from the dead load on the Lincoln arch plus the live load of 2 kN in 
its worst position. 

The thickness of 18 mm is simply additive to the thickness of 66 mm, found previously. That 
is, an arch of thickness 84 mm having the full-line profile (that is, the real profile) of Fig. 5.15 would 
just contain the lines of thrust arising from both dead and live loads. Thus the geometrical factor of 
safety, 4.2 against dead load only, is reduced by a man jumping in the worst position to 280/84 = 33. 
 
PONTE MOSCA, TURIN 
 
Mosca’s bridge over the Dora Riparia, Turin, was constructed in 1827, and has a span of 45 m. 
Castigliano gives details of the bridge, and he gives tables of the quantities required for the analysis 
in a way similar to that shown in Table 5.2. As was mentioned in Chapter 3, Castigliano was 
concerned with the exposition of his theorems, and he treats the bridge at Turin as an elastic arch 
having three redundancies, whose values he proceeds to compute, 

Castigliano shows that a cracked arch (that is, an imperfectly elastic arch) may also be dealt 
with by his methods, and he makes alternative calculations for the Turin bridge. In the first, full 
allowance is made for the elasticity of the mortar beds between the voussoirs, and the value of the 
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abutment thrust is calculated to be 352 990 kgf/m width of bridge. (It was noted above, (5.7), that it is 
necessary to solve the equations to an accuracy greater than is warranted by the data.) 

A second calculation is made for dry construction (mortar beds of zero thickness), and 
Castigliano obtains the value of 324 710 kgf for the abutment thrust, a drop of some 8%. However, 
this solution involves the line of thrust falling outside the middle third near the springings, so that the 
masonry is partially cracked. (Castigliano remarks on a general tendency of arches of small rise to lift 
from their bearings near the extrados; the line of thrust approaches the intrados, with consequent 
possible overstressing of the masonry. This matter is mentioned again in Chapter 6.) 

A final calculation allowing for the partially cracked masonry gives a thrust of 333 960 kgf. 
As an alternative to these calculations, the geometrical factor of safety will be determined. 

Castigliano's drawing is reproduced in Fig. 5.19; the arch is symmetrical, so that one half only need 
be considered for the purpose of determining the effect of dead load. The radial thickness of the 
voussoirs increases from 1.50 m at the crown to 2.00 m at the springings; the vertical thickness at the 
springings is 2.23 m. As before, the arch will be imagined to be shrunk towards its centre line until 
the line of thrust can only just be contained. At this limit, there will be five critical sections, because 
of the symmetry of the arch; these lie at the springings and at the crown, and at about the two quarter 
points (cf. Fig. 5.15 for the asymmetrical arch of Lincoln). During the shrinking process, the relative 
thicknesses of the arch ring at the various cross-sections will be maintained constant. 
 

 
Fig. 5.19 (Castigliano 1879). 

 
Castigliano divided the half-arch into six segments, Fig. 5.19. If the origin is taken at the 

crown, instead of at the springing (cf. Fig. 5.1), some simplification results; using the notation of 
(5.2), and with V = 0 by symmetry, the equations for the vertical distance between the thrust line and 
the arch centre line become 
 

 (5.23) 

In the third of these equations, for example, the value 1.49Î contains the ratio 2.23/1.50 of the 
vertical thicknesses of the arch at the springings and at the crown; the eccentricity Î is thus referred 
to the actual ring thickness of 1.50 m at the crown. Section O lies 5.36 m below section 6 (the origin); 
the value 2 021 937 kgfm is taken from Castigliano’s tables. 

Equations (5.23) solve to give Î = -D = 0.116 m and H = 373 000 kgf; this last figure is some 
5% higher than Castigliano’s elastic value. The geometrical factor of safety against dead load is 
(1.50)/(2) (0.116) = 6.5. 

The greatest mean stress in the arch occurs at the crown, where its value is 373/1.5 = 249 
tf/m2 (the corresponding value at the springings is 438/2.0 = 219 tf/ m2.) Granite (of which the arch 
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ring is made) has typical strengths in the range 5000-18 000 tf/m2; the nominal factor of safety on 
stress appears to be well over 20. 

The dead-load line of thrust is now substituted for the actual centre-line of the arch for the 
purpose of computing the effect of live load. A graphical technique is again best, and a typical critical 
position of the thrust line is shown (schematically, vertical scale ✕4) in Fig. 5.20. The eccentricities 
e of this thrust line are not constant; instead, the values el etc. are proportional to the vertical depth of 
the arch ring at the corresponding sections. The final results are presented in Fig. 5.21; the largest 
value of Mp is 1.72 tfrn for a unit (tonne) load. Thus, taking a live load of 10 tf/m width of bridge the 
value of Mp is 17.2 tfm. The basic abutment thrust is 373 tf, and the live-load eccentricity, referred to 
the crown depth as before, is therefore 17.2/373 = 0.046 m. If the dead load eccentricity of 0.116 m is 
added in, then the geometrical factor of safety is reduced to (1.50)/(2)(0.162) = 4.6 for this particular 
value of live load. 
 

 
Fig. 5.20 

 

 
Fig. 5.21 
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6 
 
Iron arches 
 
 
 
Cast iron is a material which, like stone, is strong in compression but weak in tension. If a particular 
type of stone structure has been proved by experience to be satisfactory, there would seem to be no 
reason why a structure of the same shape should not be equally satisfactory in cast iron. Indeed, for 
bridge construction the iron arch might well show advantages, not least in a reduction in overall dead 
weight and consequent reduction in the abutment thrust. 

Certainly bridges of cast iron, and later of wrought iron, were much in fashion from the early 
years of the nineteenth century onwards, and many of these were constructed in imitation of the 
masonry arch. There were, however, differences. In the first place, the continuous masonry barrel 
made up of the voussoir arch rings could be replaced either by cast-iron 'voussoirs', which were really 
box-section frames, or by individual parallel iron ribs, braced together to give lateral stability to the 
whole structure. Secondly, the conventional construction of a masonry bridge usually (but not 
always) involves the provision of spandrel walls to contain non-structural fill to carry the roadway. In 
the iron bridge there is the possibility of connecting the roadway to the arch by means of an open iron 
framework. 

The profiles and dimensions of these new iron arches were worked out by using the theory 
established for the masonry arch. In particular, the shape of the arch could be checked against the 
thrust line resulting from given loading. However, a technical difference is at once apparent between 
the design of masonry and of iron arches. The massive continuous barrel of the masonry arch is 
subject to low stresses, and, apart from final checks on the actual stress levels, a 'geometrical' 
approach to design, as has been indicated throughout this book, is valid. By contrast the iron arch 
bridge, whether in the form of hollow 'voussoirs' or of individual ribs, has a barrel consisting largely 
of voids, and the stress levels in the main members will be a significant fraction of the fracture 
strength of the material. It can no longer be assumed that the ratio of fracture stress to working stress 
is so large that the material can be considered to be infinitely strong; on the contrary, it is essential 
for the designer to make some estimate of the strength of his bridge by reference to the known 
fracture strength of his material. 

It is no surprise, therefore, to find an early interest (for example, that of Tredgold in the 
1820s) in the calculation of the strength of iron members. What was needed, for the analysis of an 
iron arch rib, was an understanding of the way that rib would respond to an eccentric thrust. Elastic 
methods were being developed which could be used to deal with this kind of problem, and Navier in 
1826 is usually credited with giving the first correct analysis of the behaviour of the cross-section in 
bending. (He had in fact not quite grasped the role of principal axes in the bending of asymmetrical 
sections, and Tredgold made a similar mistake.) 

Elastic theory was, then, advancing at a time when civil engineering construction could make 
use of its findings, and the whole science of 'strength of materials', dealing with local behaviour of 
members in response to known loading, was developed. It was inevitable that elastic methods should 
also come to be used to study the overall behaviour of the structure; that is, the position of the thrust 
line in a redundant arch could be determined by the new elastic principles – for example, by the use 
of Castigliano’s theorems. It was seen in Chapter 4 that Pippard relied on this same elastic theory in 
his twentieth-century studies of the arch. 
There is no need, however, to use the same types of theory for two very different types of analysis. 
On the one hand the overall state of equilibrium must be determined, and this is a problem in 'theory 
of structures'. This analysis will lead to an estimate of the internal structural forces, and it is a second 
step to design local cross-sections to resist those forces; this is a problem in 'strength of materials'. 
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The designer must determine the overall state of his structure as best he can; elastic theory 
will give only one of the infinite number of possible equilibrium states. The use of the 'middle-third' 
rule, or, what is exactly equivalent, of a geometrical factor of safety, is an alternative way, not 
involving elastic concepts, of deriving a set of primary structural forces. For the masonry bridge, the 
idea of an arch of minimum thickness just containing the thrust line leads in some sense to the 
derivation of the most favourable equilibrium state; the procedure is, however, 'safe', as is 
demonstrated by the plastic theorems. 

The determination of an overall state is usually all that is necessary for the design of the 
masonry arch, although a small excursion must be made into the field of strength of materials to 
ensure that stresses are indeed low, as has been assumed. For the cast iron arch, however, the thrust 
and bending moment acting at any cross-section, whose values have been found by the use of a 
theory of structures, must be used in the second stage of the calculations; the resulting values of the 
stresses at the cross-section must be determined. These second-stage calculations may well be elastic, 
although there is no need for them to be so. If the arch material were a ductile steel, then the 
calculations might well refer to full plastic moments. Similarly, for wrought iron, the material has 
sufficient ductility to prompt the use of plastic theory. However, in the two examples which follow 
which will illustrate the process of analysis of iron arches, elastic stresses are quoted. 
 
MAGDALENE BRIDGE, CAMBRIDGE 
 
As was implied in the previous section of this chapter, conclusions about the strength of cast-iron 
arches must be reached with some care. The brittle nature of the material may preclude that 
essentially ductile structural behaviour that is at the heart of the plastic theorems. In specific terms, it 
may not be possible to rely on the development of any assumed value of tensile stress; if a particular 
section has at some time been overloaded, then the material may have fractured, and no tensile stress 
can be developed at all. It turns out that there is no problem on this score with the masonry arch; the 
hinging behaviour between voussoirs generates the necessary structural ductility, and the safe 
theorem remains valid. 

No such absolute assurance can be given in the same terms for brittle material. This note of 
warning is not sounded at the use of the plastic theorems; rather, it is the structure made of brittle 
material that is suspect, and not the methods used to analyse the structure. It is merely that the 
inability to provide a proper base for the plastic theorems brings into sharp focus the importance of 
choice of material for structural design, whether the analysis be elastic or plastic. The consequences 
of this view of a brittle structure may be illustrated with reference to an actual bridge. 
 

 
Fig. 6.1 Magdalene Bridge, Cambridge; Arthur Browne, 1823. 
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Magdalene Bridge, built in 1823, has eight elliptical cast-iron ribs of 45 ft span, Fig. 6.1. Each 
of the ribs has the idealized cross-section of Fig. 6.2, in which the leading dimensions (in 
millimetres) are the same as those of the actual rib, but where a slightly more complex outline has 
been replaced by rectangular blocks for ease of computation. The ribs are spaced at about 4 ft centres, 
and cast-iron plates span between the ledges at the bottom of the ribs, so that the bridge has an 
elliptical iron intrados. Earth and rubble (some now replaced by concrete) are placed on these iron 
plates to form a fill of the conventional kind supporting the roadway. There has been further 
rehabilitation work in 1981-82. 
 

 
Fig. 6.2 Cross-section of rib of Magdalene Bridge, Cambridge. 

 
For the assessment of the bridge before these recent works, the breaking stress in compression 

of the cast iron was taken as about 40 ton/in2, and that in tension as about 10 ton/in2; 
correspondingly, permissible working stresses were set at 10 ton/in2 and 3 ton/in2 respectively, or 
about 155 N/mm2 and 46 N/mm2. Figure 6.3(a) shows the outline of an arch rib, and also a thrust line 
for the dead load together with the worst case of live loading that was considered. It will be seen that 
at the marked "critical section" (which is the section most highly stressed in the rib under the given 
loading) the thrust line falls below the intrados of the arch; this is of course permissible for a material 
able to carry tension. However, the stresses at the critical section were calculated as 115 N/mm2 in 
compression and 69 N/mm2 in tension, and this last figure is 50% higher than the permissible value 
of 46 N/mm2. 
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Fig. 6.3 

 
Now the Position of the thrust line in Fig. 6.3(a) was determined by treating the arch as a 

statically-determinate three-pinned structure. The 'pin' at mid span is a reasonable concept; the 
connection there is made with a system of yokes and wedges, and the position in the cross-section at 
which the thrust is transmitted between the two halves is fairly well defined. At the springings, 
however, the ribs are carried by a thrust plate running the full width of the bridge, and the exact 
nature of the connection is not known. If there is continuous contact over the full depth of the rib 
between the rib and thrust plate, and between the thrust plate and the abutment then the thrust line 
could lie anywhere within the depth of the rib. For the 'statically-determinate' analysis which leads to 
Fig. 6.3(a), the 'pin' at the abutment was taken arbitrarily at the centroid of the cross-section, so that a 
uniform compressive stress acts over the full depth of the rib at the springing. 
 
 Figure 63(b) shows the results of a second analysis for the same loads in which the abutment 'pin' 
has been placed some 150 mm above the centroidal axis. Both the compressive stress and the tensile 
stress at the critical section are reduced, to 97 and 45 N/mm2 respectively, and in fact the tensile 
stress has been reduced to just below the nominal permissible value. 

Thus if the thrust line of Fig. 6.3(b), representing a first stage of a structural assessment of the 
bridge, were the correct thrust line, then the corresponding elastic stresses arising at the most highly 
stressed section would appear to be satisfactory. Now the actual conditions at the abutments are not 
known, so that it is not possible to decide that the thrust line of Fig. 6.3(b) is more 'correct' than that 
of Fig. 6.3(a), or vice versa. The matter is not one of mere ignorance; as was pointed out in Chapter 
2, even if information were available as to the precise connection of the arch rib to its springing, the 
passage of time, involving shifts and settlements of the structure, would render that information 
meaningless. If the safe theorem were valid, then it would not be necessary to choose between the 
alternative states shown in Figs. 6.3(a) and (b). The stresses corresponding to the thrust line of Fig. 
6.3(b) are satisfactory, and there should be an end to the matter; the arch cannot collapse under the 
given loading. 

However, the thrust line could in fact drop to the position shown in Fig. 6.3(a), or lower. In 
practice, any spread in the abutments of a bridge will lead to a fall in value of the abutment thrust, 
and a corresponding lowering of the thrust line at the springings of the arches. As was mentioned in 
Chapter 5, Castigliano noted this drooping tendency of the thrust line, and indeed he advocated the 
provision of rounded ends to the ribs, to provide a pinned bearing at a definite point in the cross-
section. The arches of Magdalene Bridge could apparently be forced to be in an unequivocally 
satisfactory state if they were jacked off their abutments, and pins inserted to correspond with the 
position of the thrust line of Fig. 6.3(b). 
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Such a procedure might be thought to conflict with common sense; the conversion of a 
redundant into a statically-determinate structure cannot improve its strength. Such a common-sense 
view can certainly be sustained for any ductile structure, to which the safe theorem will apply. Once 
again, however, what is suspect is the structure made of brittle material. What might happen in 
practice is that the thrust line for the redundant arch could in fact drop to a position where iron cracks 
in the extrados; the line would then rise at once to a position corresponding more closely to that of 
Fig. 6.3(b). However, the arch rib in its newly cracked state might not be able to accommodate within 
its depth the new position of the thrust line, and, until this has been checked (and levels of 
compressive stress verified) no assurance can be given about the state of the rib. 

Absolute assurance of the safety of redundant cast-iron arches can be obtained if they are 
imagined to be cracked throughout. That is, the arch rib of Fig. 6.3 could be thought of as being made 
up of 'voussoirs' imitating the masonry arch, and unable to accept tensile stresses at any section. If 
such an arch were analysed by the methods of earlier chapters in this book, and found to be 
satisfactory, and if in addition compressive stress levels were also checked, then the required 
assurance would be obtained. 

Alternatively, the provision of abutment pins (and a crown pin, if necessary) would make the 
cast-iron arch statically determinate, with no possibility of ambiguity in the position of the thrust line. 
The arch rib would no longer be subject to any vagaries of the environment, and the analyst could 
have some reasonable assurance that his calculated stresses would not in practice be exceeded. 

All these difficulties arise from the brittle nature of cast iron (which may in practice have a 
greater reserve of ductility, even though small, than is assumed). The difficulties disappear with the 
use of wrought iron, which certainly has enough tensile ductility for there to be no question of 
fracture. 
 
A WROUGT-IRON BRIDGE 
 
Figure 6.4 shows schematically (but based upon an actual bridge) the central span (of 27.4 m) of a 
wrought-iron road bridge. The top girders supporting the roadway and the girders forming the arches 
are built up with riveted construction from solid web plates and angle and plate flanges; the roadway 
girders and arch girders merge together near mid span. The 'decorative' open spandrel ironwork 
serves to transmit the loads from the roadway girders to the arches. If the bridge is viewed in this 
straightforward way, then loads on the roadway will be transmitted to the curved arch members, and 
these may be analysed by thrust-line techniques. For this particular bridge, all combinations of dead 
and live loading produced stresses within permissible limits; the bridge was shown, in fact, to be 
satisfactory. 
 

 
Fig. 6.4 Schematic diagram of wrought-iron bridge. 

 
However, a conventional elastic analysis did not give this straightforward view. It was easy to 

adapt an elastic computer program for the analysis; the arch was idealised as an assemblage of 
elements having locally the section properties of the appropriate point in the arch. A large number of 
loading cases could then be investigated, and worst values of compressive and tensile stresses 
tabulated in the usual way. 

In addition to various combinations of dead and live loads, two further 'loading' cases were 
considered. The first of these was a study of the effects of variation of temperature. The second 
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results from an observed defect in the bridge; one of the river piers has tilted at some time, and the 
main span of 27.4 m has increased at road level by about 13 mm. 

When these different loading cases were taken into account, it was found that the worst tensile 
stress at any section in the bridge was 309 N/mm2. Of this total, 57 N/mm2 was due to the most 
unfavourable combination of dead and live loading, 114N/mm2 was due to contraction on change of 
temperature, and 138 N/mm2 was due to rotation of the river pier. The accepted permissible tensile 
stress was 120 N/mm2, so that the total of 309 N/mm2 is considerably in excess of this value. 

The relative magnitudes of some of these quantities can be checked by simple calculations. 
An increase of 13 mm in a span of 27.4 m represents a strain of about 0.5 ✕ 10-3; if this strain is 
absorbed elastically in the iron then the corresponding tensile stress is about 100 N/mm2. Similarly, a 
temperature variation of ± 30°C would lead to a strain of about ± 0.4 ✕ 10-3, and the corresponding 
elastic stress would also be of the order ± 100 N/mm2. 

Now both the temperature strain and the strains due to the increase in span lead to self-
equilibrating stresses. A qualitative test on the nature of the stresses is very easy; neither temperature 
variation nor a mismatch in span will give rise to stresses in a statically-determinate structure (for 
example, a three-pin arch of the same geometry as the one being considered). A redundant structure, 
however, is capable of sustaining stresses in the absence of external load; indeed, it will inevitably be 
in such a state. The members of the riveted bridge of Fig. 6.4 will have been forced together to some 
extent during construction, and it is of note that such unknown erection stresses will be ignored in 
any elastic calculation. 

It is in fact safe, by the plastic theorems, to ignore such stresses; they can have no effect on 
the final carrying capacity of a ductile structure. Similarly, the temperature stress of 114 N/mm2, and 
the stress of 138 N/mm2 due to rotation of the river pier, arise only because the arch is statically 
indeterminate; they cannot affect the final strength of the bridge. Of the total worst tensile stress of 
309 N/mm2, only 57 N/mm2 is due to the loading; the other contributions arise from a 'lack-of-fit' 
exactly on a par with erection defects. 

It is the arguments about small imperfections that are vital, as was seen in Chapter 2, and not 
the calculations of the magnitudes of the resulting self-equilibrating stresses. Such imperfections (as 
a tilting of a river pier) may well be very evident on close inspection of the structure, and they may 
lead to visible overstraining of wrought iron, or to separation of voussoirs in a masonry arch. These 
overstrains and these cracks will not, however, be visible if the engineer takes a more distant view of 
his structure; the geometry of the bridge is virtually unchanged. The shift of an abutment will lead to 
the cracking of a masonry arch. It is the natural state of masonry to be cracked, but its final strength 
is unaffected by such natural and unavoidable defects. 
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